Skip to main content
Log in

Comparison of Several Numerical Methods for Fog Prediction

  • OPTICAL MODELS AND DATABASES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Several methods for visibility calculation for fog forecasting are discussed, including a method suggested by the authors. We use the WRF-ARW model to obtain the necessary meteorological information. The forecasts are estimated using data with a high spatial resolution from European Synoptic stations. The analysis of the methods shows a generally satisfactory quality of forecasts for this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. P. Khromov and L. I. Mamontova, Meteorological Dictionary (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  2. L. T. Matveev, Atmospheric Physics (Gidrometeoizdat, Leningrad, 1965) [in Russian].

    Google Scholar 

  3. A. S. Zverev, Synoptical Meteorology (Gidrometeoizdat, Leningrad, 1977) [in Russian].

    Google Scholar 

  4. C. T. R. Wilson and J. J. Thomson, “Condensation of water vapour in the presence of dust-free air and other gases,” Proc. Roy. Soc., London 61 (369–377), 240–242 (1897).

  5. S. Petersen, The Weather Analysis and Forecasting (Gidrometeoizdat, Leningrad, 1961) [in Russian].

    Google Scholar 

  6. M. A. Kohler and M. M. Richards, “Multicapacity basin accounting for predicting runoff from storm precipitation,” J. Geophys. Res. 67 (13), 5187–5197 (1962).

    Article  ADS  Google Scholar 

  7. M. Neiburger and M. G. Wurtele, “On the nature and size of particles in haze, fog, and stratus of the Los Angeles region,” Chem. Rev. 44 (2), 321–335 (1949).

    Article  Google Scholar 

  8. J. J. George, Weather Forecasting for Aeronautics (Academic Press, London, 1960).

    Google Scholar 

  9. N. V. Petrenko, “Improvement of the technique for forecasting advective fog and visibility in this fog,” Tr. Gidromet. SSSR, Is. 162, 34–45 (1975).

    Google Scholar 

  10. L. A. Klyuchnikova, “About the advective fog formation,” Tr. GGO, No. 60, 122 (1956).

    Google Scholar 

  11. Z. E. Babenko, Avtoref. Candidate’s Dissertation in Geography (Middle Asian Regional Research Institute named after V.A. Bugaev, Tashkent, 1961).

  12. H. Koschmieder, “Measurements of visibility at danzig,” Mon. Weather. Rev. 58 (11), 439–444 (1930).

    Article  ADS  Google Scholar 

  13. H. G. Houghton and W. H. Radford, On the Measurement of Drop Size and Liquid Water Content in Fogs and Clouds (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Massachusetts, 1938).

    Book  Google Scholar 

  14. D. B. Meison, G. T. Nikanorova, and V. S. Protopopova, Physics of Clouds (Gidrometeoizdat, Leningrad, 1961) [in Russian].

    Google Scholar 

  15. C. H. Bang, J. W. Lee, and S. Y. Hong, “Predictability experiments of fog and visibility in local airports over Korea using the WRF model,” J. KOSAE 24 (E2), 92–101 (2008).

    Google Scholar 

  16. M. T. Stoelinga and T. T. Warner, “Nonhydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an East Coast winter precipitation event,” J. Appl. Meteorol. 38 (4), 385–404 (1999).

    Article  ADS  Google Scholar 

  17. B. A. Kunkel, “Parameterization of droplet terminal velocity and extinction coefficient in fog models,” J. Clim. Appl. Meteorol. 23 (1), 34–41 (1984).

    Article  ADS  Google Scholar 

  18. S. A. Rutledge and P. Hobbs, “The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the "seeder-feeder” process in warm-frontal rainbands," J. Atmos. Sci. 40 (5), 1185–1206 (1983).

    Article  ADS  Google Scholar 

  19. J. R. Stallabrass, “Snow property measurement workshop,” in Proc. National Research Council Associate Committee on Geotechnical Research. Tech. memorandum (Canada, 1985), no. 140, p. 389–410

  20. J. S. Marshall and W. M. Palmer, “The distribution of raindrops with size,” J. Meteorol. 5, 165–166 (1948).

    Article  Google Scholar 

  21. P. E. Bieringer, M. Donovan, F. Robasky, D. A. Clark, and J. Hurst, “A characterization of NWP ceiling and visibility forecasts for the terminal airspace,” in 12th Conf. Aviation, Range, and Aerospace Meteorology, Atlanta, GA, 2006.

  22. F. Wantuch, “Visibility and fog forecasting based on decision tree method,” Idojárás 105, 29–38 (2001).

    Google Scholar 

  23. J. A. Doran, P. J. Roohr, D. J. Beberwyk, G. R. Brooks, G. A. Gayno, R. T. Williams, J. M. Lewis, and R. J. Lefevre, “The MM5 at the Air Force Weather Agency—New products to support military operations,” in 8th Conf. Aviation, Range, and Aerospace Meteorology, Dallas, Texas, 1999.

  24. W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, A Description of the Advanced Research WRF Version 2. (Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado, USA, 2005). https://doi.org/10.5065/D68S4MVH

    Google Scholar 

  25. V. I. Bychkova, R. Yu. Ignatov, and K. G. Rubinshtein, “The analysis of thermal fluxes on surface from WRF-ARW model calculations in polar regions,” Uch. Zap. Ros. Gos. Gidromet. Univ., No. 20, 42–55 (2011).

  26. M. M. Smirnova, Avtoref. Candidate’s Dissertation in Mathematics and Physics (Moscow State University, Moscow, 2014).

  27. G. A. Grell, Y. H. Kuo, and R. J. Pasch, “Semiprognostic tests of cumulus parameterization schemes in the middle latitudes,” Mon. Weather. Rev. 119 (1), 5–31 (1991).

    Article  ADS  Google Scholar 

  28. J. A. Milbrandt and M. K. Yau, “A multimoment bulk microphysics parameterization Part I. A proposed three-moment closure and scheme description,” J. Atmos. Sci. 62 (9), 3065–3081 (2005).

    Article  ADS  Google Scholar 

  29. P. Bougeault and P. Lacarrere, “Parameterization of orography-induced turbulence in a mesobeta-scale model,” Mon. Weather. Rev. 117 (8), 1872–1890 (1989).

    Article  ADS  Google Scholar 

  30. R. West, D. Crisp, and L. Chen, “Mapping transformations for broadband atmospheric radiation calculations,” J. Quant. Spectrosc. Radiat. Transfer 43 (3), 191–199 (1990).

    Article  ADS  Google Scholar 

  31. M. B. Ek, K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, Gayno, and J. D. Tarpley, “Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model,” J. Geophys. Res.: Atmos. 108 (D22), 16 (2003).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was partly supported by the Russian Foundation for Basic Research (grant nos. 16-05-00704, 18-35-00044 mol_a, and 16-05-00822 a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Zarochentsev.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarochentsev, G.A., Rubinstein, K.G., Bychkova, V.I. et al. Comparison of Several Numerical Methods for Fog Prediction. Atmos Ocean Opt 32, 193–201 (2019). https://doi.org/10.1134/S1024856019020180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019020180

Keywords:

Navigation