Skip to main content
Log in

Laser beam distortions caused by a shock wave near the turret of a supersonic aircraft

  • Optics of Stochastically-Heterogeneous Media
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

We present results of calculations of the mean intensity of a beam which passes in the beginning of the path through a shock wave which is formed during a supersonic air flow around the turret and propagates further in a homogeneous medium. It is shown that the spatial inhomogeneity of the air refractive index in the region of a shock wave can lead to strong anisotropic distortions of a beam intersecting the wave; the distortions result in focusing and defragmentation of the beam at comparatively short distances from the turret and rapid degradation of the beam in the process of its further propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Frumker and O. Pade, “Generic method for aerooptic evaluations,” Appl. Opt. 43 (16), 3224–3228 (2004).

    Article  ADS  Google Scholar 

  2. O. Pade, “Propagation through shear layers,” Proc. SPIE 6364, 63640 (2006).

    Article  ADS  Google Scholar 

  3. K. N. Volkov and V. N. Emel’yanov, “Aerooptic effects in a turbulent flow and their simulation,” Tech. Phys. 53 (2), 217–223 (2008).

    Article  Google Scholar 

  4. M. Henriksson, L. Sjöqvist, O. Parmhed, and C. Fureby, “Numerical laser beam propagation using large eddy simnulation of a jet engine flow field,” Opt. Eng. 54 (8), 085101 (2015). doi 10.1117/1.OE.54.8.085101

    Article  Google Scholar 

  5. L. Bo and L. Hong, “Aero-optical characteristics of supersonic flow over blunt wedge with cavity window, J. Shanghai Jiaotong Univ. 16 (6), 742–749 (2011).

    Google Scholar 

  6. L. Xu and Y. Cai, “Influence of altitude on aero-optic imaging deviation,” Appl. Opt. 50 (18), 2949–2957 (2011).

    Article  ADS  Google Scholar 

  7. M. Wang, A. Mani, and S. Gordeev, “Physics and computation of aero-optics,” Annu. Rev. Fluid Mech. 44, 299–321 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Q. Gao, S. H. Yi, Z. F. Jiang, L. He, and Y. X Zhao, “Hierarchical structure of the optical path length of the supersonic turbulent boundary layer,” Opt. Express 20, 16494–16503 (2012).

    Article  ADS  Google Scholar 

  9. V. A. Banakh, A. A. Sukharev, and A. V. Falits, “Diffraction of the optical beam on a shock wave in the vicinity of a supersonic aircraft,” Opt. Atmos. Okeana 26 (11), 932–941 (2013).

    Google Scholar 

  10. V. A. Banakh, A. A. Sukharev, and A. V. Falits, “Optical beam distortions induced by a shock wave,” Appl. Opt. 54 (8), 2023–2031 (2015).

    Article  ADS  Google Scholar 

  11. V. A. Banakh, A. A. Sukharev, and A. V. Falits, “Manifestation of aero-optical effects in a turbulent atmosphere in supersonic motion of a conical body,” Atmos. Ocean. Opt. 28 (1), 24–33 (2015).

    Article  Google Scholar 

  12. V. E. Zuev, V. A. Banakh, and V. V. Pokasov, Optics of a Turbulent Atmosphere. Modern Problems of Atmospheric Optics (Gidrometeoizdat, Leningrad, 1988), Vol. 5 [in Russian].

    Google Scholar 

  13. V. P. Kandidov, “Monte Carlo method in nonlinear statistical optics,” Phys.-Uspekhi 39 (12), 1243–1272 (1996).

    Article  ADS  Google Scholar 

  14. A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in a Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  15. D. C. Wilcox, Turbulence modeling for CFD (DCW Industries, Inc., La Canada, California, 2006).

    Google Scholar 

  16. V. A. Banakh, D. A. Marakasov, and A. A. Sukharev, “Reconstruction of the structural characteristic of the refractive index and average air density in a shock wave arising in a supersonic flow past obstacles from optical measurements,” Opt. Spectrosc. 111 (6), 967–972 (2011).

    Article  Google Scholar 

  17. K. Wang and M. Wang, “Aero-optics of subsonic turbulent boundary layers,” J. Fluid Mech. 696, 122–151 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Q. Gao, S. H. Yi, Z. F. Jiang, L. He, and Xi Wang, “Structure of the refractive index distribution of the supersonic turbulent boundary layer,” Opt. Laser. Eng. 51 (9) 1113–1119 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Banakh.

Additional information

Original Russian Text © V.A. Banakh, A.A. Sukharev, 2016, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banakh, V.A., Sukharev, A.A. Laser beam distortions caused by a shock wave near the turret of a supersonic aircraft. Atmos Ocean Opt 29, 225–233 (2016). https://doi.org/10.1134/S1024856016030039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856016030039

Keywords

Navigation