Skip to main content
Log in

Manifestation of aero-optical effects in a turbulent atmosphere in supersonic motion of a conical body

  • Optics of Stochastically-Heterogeneous Media
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

This paper presents results of the analysis of the mean intensity, intensity fluctuations, and regular and random shifts of optical beams propagating through a shock wave resulting from the supersonic motion of a conical body in a turbulent atmosphere. It is shown that aero-optical effects caused by a shock wave are suppressed with an increase in the optical turbulence. Quantitative data illustrating the degree of the manifestation of aero-optical effects for paths with different geometry and length depending on turbulent conditions of light propagation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Frumker and O. Pade, “Generic method for aerooptic evaluations,” Appl. Opt. 43(16), 3224–3228 (2004).

    Article  ADS  Google Scholar 

  2. O. Pade, “Models of turbulence for aero-optics applications,” Proc. SPIE—Int. Soc. Opt. Eng. 4419, 494–498 (2001).

    ADS  Google Scholar 

  3. T. Wang, Y. Zhao, D. Xu, and Q. Y. Yang, “Numerical study of evaluating the optical quality of supersonic flow fields,” Appl. Opt. 46(23), 5545–5551 (2007).

    Article  ADS  Google Scholar 

  4. K. Wang and M. Wang, “Aero-optics of subsonic turbulent boundary layers,” J. Fluid Mech. 696, 122–151 (2012).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. F. R. Zubair and H. J. Catrakis, “Aero-optical interaction along laser beam propagation paths in compressible turbulence,” AIAA J. 45(7), 1663–1674 (2007).

    Article  ADS  Google Scholar 

  6. Q. Gao, S. H. Yi, Z. F. Jiang, L. He, and Y. X. Zhao, “Hierarchical structure of the optical path length of the supersonic turbulent boundary layer,” Opt. Express 20(15), 16494–16503 (2012).

    Article  ADS  Google Scholar 

  7. A. Buckner, S. Gordeyev, and E. J. Jumper, “Optical aberrations caused by transonic attached boundary layers: underlying flow structure,” AIAA Paper 2005-0752.

  8. R. M. Rennie, D. A. Duffin, and E. J. Jumper, “Characterization and aero-optic correction of a forced two-dimensional weakly compressible shear layer,” AIAA J. 46(11), 2787–2795 (2008).

    Article  ADS  Google Scholar 

  9. O. Pade, “Optical propagation trough turbulent jets,” Proc. SPIE—Int. Soc. Opt. Eng. 5572, 24–33 (2004).

    ADS  Google Scholar 

  10. E. Frumker, O. Pade, and P. I. Rojt, “Optical distortions caused by propagation through turbulent shear layers,” Proc. SPIE—Int. Soc. Opt. Eng. 5237, 31–38 (2004).

    ADS  Google Scholar 

  11. O. Pade, “Propagation through shear layers,” Proc. SPIE—Int. Soc. Opt. Eng. 6364, 63640 (2006).

    ADS  Google Scholar 

  12. V. A. Banakh, V. I. Zapryagaev, I. N. Kavun, V. M. Sazanovich, and R. Sh. Tsvyk, “Experimental investigations of the variance and fluctuation spectra of intensity of a laser beam crossing the supersonic gas flow,” Atmos. Ocean. Opt. 20(5), 368–373 (2007).

    Google Scholar 

  13. V. A. Banakh, D. A. Marakasov, and A. A. Sukharev, “Reconstruction of the radial dependence of the structural characteristic of the refractive index in a supersonic gas flow from laser beam intensity fluctuations,” Opt. Spectrosc. 108(1), 117–122 (2010).

    Article  ADS  Google Scholar 

  14. V. A. Banakh, D. A. Marakasov, and A. A. Sukharev, “Reconstruction of the structural characteristic of the refractive index and average air density in a shock wave arising in a supersonic flow past obstacles from optical measurements,” Opt. Spectrosc. 111(6), 1032–1037 (2011).

    Google Scholar 

  15. V. A. Banakh, V. I. Zapryagaev, V. M. Sazanovich, A. A. Sukharev, and R. Sh. Tsvyk, “Experimental research by optical methods of turbulence above the model, blown by the supersonic flow,” Opt. Atmos. Okeana 23(12), 1091–1098 (2010).

    Google Scholar 

  16. V. A. Banakh, A. A. Sukharev, and A. I. Falits, “Diffraction of the optical beam on a shock wave in the vicinity of a supersonic aircraft,” Opt. Atmos. Okeana 26(11), 932–941 (2013).

    Google Scholar 

  17. A. S. Gurvich and M. E. Gracheva, “A simple model for calculation of turbulent noises in optical systems,” Izv. AN SSSR, Fiz. Atmos. Okeana 16(10), 1107–1111 (1980).

    ADS  Google Scholar 

  18. V. E. Zuev, V. A. Banakh, and V. V. Pokasov, Optics of a Turbulent Atmosphere. Modern Problems of Atmospheric Optics (Gidrometeoizdat, Leningrad, 1988), Vol. 5 [in Russian].

    Google Scholar 

  19. V. P. Kandidov, “Monte Carlo method in nonlinear statistical optics,” Phys.-Uspekhi 39(12), 1243–1272 (1996).

    Article  ADS  Google Scholar 

  20. V. A. Banakh, I. N. Smalikho, and A. V. Falits, “Effectiveness of the subharmonic method in problems of computer simulation of laser beam propagation in a turbulent atmosphere,” Atmos. Ocean. Opt. 25(2), 106–109 (2012).

    Article  Google Scholar 

  21. V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  22. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics. Random Fields (Nauka, Moscow, 1978), part 2 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Banakh.

Additional information

Original Russian Text © V.A. Banakh, A.A. Sukharev, A.V. Falits, 2014, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banakh, V.A., Sukharev, A.A. & Falits, A.V. Manifestation of aero-optical effects in a turbulent atmosphere in supersonic motion of a conical body. Atmos Ocean Opt 28, 24–33 (2015). https://doi.org/10.1134/S1024856015010029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856015010029

Keywords

Navigation