Skip to main content
Log in

Y-Shaped Microfluidic Fuel Cell with Novel Cathode Structure

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Due to low oxygen solubility in the electrolyte, creating a depletion layer on the cathode surface is an important factor in reducing the performance of the microfluidic fuel cell. In this paper, for improving the mass transfer to the surface of the cathode in the Y-shaped microfluidic fuel cell with a flow over structure, a novel cathode structure is presented. Here, the conventional cathode is divided into smaller parts, and these parts are placed in the path of the oxidant flow. We consider the microfluidic fuel cell with liquid phase fuel and oxidant streams operate at room temperature T = 298 K. Results show that due to the appropriate mass transfer rate to the surface of the proposed cathode, the possibility of the formation of the depletion area on the cathode surface is reduced. In the proposed structure of the cathode, both the initial parts of the cathode and the end parts of the cathode play a role in generating electric current, and as a result, the output current density of the cell increases. The results show that the electric current density and the peak power density of the proposed cell are significantly higher than conventional cells at both low and high reactant flow rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Chou, S.K., Yang, W.M., Chua, K.J., Li, J., and Zhang, K.L., Development of micro power generators—a review, Appl. Energy, 2011, vol. 88, p. 1.

    Article  CAS  Google Scholar 

  2. Yousfi-Steiner, N., Moçotéguy, P., Candusso, D., and Hissel, D., A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: causes, consequences and diagnostic for mitigation, J. Power Sources, 2009, vol. 194, no. 1, p. 130.

    Article  CAS  Google Scholar 

  3. Wang, Y., Leung, D.Y., Xuan, J., and Wang, H., A review on unitized regenerative fuel cell technologies, part-A: unitized regenerative proton exchange membrane fuel cells, Renew. Sust. Energy Rev., 2016, vol. 65, p. 961.

    Article  CAS  Google Scholar 

  4. Morse, J.D., Micro-fuel cell power sources, Int. J. Energy Res., 2007, vol. 31, p. 576.

    Article  CAS  Google Scholar 

  5. Choban, E.R., Markoski, L.J., Wieckowski, A., and Kenis, P.J., Microfluidic fuel cell based on laminar flow, J. Power Sources, 2004, vol. 128, p. 54.

    Article  CAS  Google Scholar 

  6. Choban, E.R., Waszczuk, P., and Kenis, P.J., Characterization of limiting factors in laminar flow-based membraneless microfuel cells, Electrochem. Solid State Lett., 2005, vol. 8, p. A348.

    Article  CAS  Google Scholar 

  7. Kjeang, E., Brolo, A.G., Harrington, D.A., Djilali, N., and Sinton, D., Hydrogen peroxide as an oxidant for microfluidic fuel cells, J. Electrochem. Soc., 2004, vol. 154, p. B1220.

    Article  Google Scholar 

  8. Kjeang, E., McKechnie, J., Sinton, D., and Djilali, N., Planar and three-dimensional microfluidic fuel cell architectures based on graphite rod electrodes, J. Power Sources, 2007, vol. 168, p. 379.

    Article  CAS  Google Scholar 

  9. Salloum, K.S., Hayes, J.R., Friesen, C., and Posner, J.D., Sequential flow membraneless microfluidic fuel cell with porous electrodes, ECS Trans., 2008, vol. 13, p. 21.

    Article  CAS  Google Scholar 

  10. Yoon, S.K., Fichtl, G.W., and Kenis, P.J., Active control of the depletion boundary layers in microfluidic electrochemical reactors, Lab. Chip, 2006, vol. 6, p. 1516.

    Article  CAS  Google Scholar 

  11. Rizvandi, O.B. and Yesilyurt, S., Modeling and performance analysis of branched microfluidic fuel cells with high utilization, Electrochim. Acta, 2019, vol. 318, p. 169.

    Article  CAS  Google Scholar 

  12. Sun, M.H., Casquillas, G.V., Guo, S.S., Shi, J., Ji, H., Ouyang, Q., and Chen, Y., Characterization of microfluidic fuel cell based on multiple laminar flow, Microelectron. Eng., 2007, vol. 84, p. 1182.

    Article  CAS  Google Scholar 

  13. Lee, S.H. and Ahn, Y., Upscaling of microfluidic fuel cell using planar single stacks, Int. J. Energy Res., 2019, vol. 43, p. 5027.

    Article  Google Scholar 

  14. Marschewski, J., Ruch, P., Ebejer, N., Kanan, O.H., Lhermitte, G., Cabrol, Q., Michel, B., and Poulikakos, D., On the mass transfer performance enhancement of membraneless redox flow cells with mixing promoters, Int. J. Heat Mass Transfer, 2017, vol. 106, p. 884.

    Article  CAS  Google Scholar 

  15. Ferrigno, R., Stroock, A.D., Clark, T.D., Mayer, M., and Whitesides, G.M., Membraneless vanadium redox fuel cell using laminar flow, J. Amer. Chem. Soc., 2002, vol. 124, p. 12930.

    Article  CAS  Google Scholar 

  16. Feali, M.S. and Fathipour, M., An air-breathing microfluidic fuel cell with a finny anode, Russ. J. Electrochem., 2014, vol. 50, p. 162.

    Article  CAS  Google Scholar 

  17. Liu, Z., Ye, D., Chen, R., Zhang, B., Zhu, X., and Liao, Q., A dual-functional three-dimensional herringbone-like electrode for a membraneless microfluidic fuel cell, J. Power Sources, 2019, vol. 438, p. 227058.

    Article  CAS  Google Scholar 

  18. Probstein, R.F., Physicochemical Hydrodynamics: an Introduction, 2nd ed., New York: John Wiley&Sons, 2003.

    Google Scholar 

  19. Chang, M.H., Chen, F., and Fang, N.S., Analysis of membraneless fuel cell using laminar flow in a Y‑shaped microchannel, J. Power Sources, 2006, vol. 159, p. 810.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Feali.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feali, M.S. Y-Shaped Microfluidic Fuel Cell with Novel Cathode Structure. Russ J Electrochem 58, 626–633 (2022). https://doi.org/10.1134/S1023193522070060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522070060

Keywords:

Navigation