Skip to main content
Log in

Effect of geometrical configurations on alkaline air-breathing membraneless microfluidic fuel cells with cylinder anodes

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Membraneless microfluidic fuel cells (MMFCs) outperform traditional membrane-based micro-fuel cells in membraneless architecture and high surface-to-volume ratio and facile integration, but still need substantial improvement in performance. The fundamental challenges are dictated by multiphysics regarding cell configurations: the interaction of fluid flow, mass transport and electrochemical reactions. We present a numerical research that investigates the effect of geometrical configurations (rod arrangement, cell length, rod diameter and spacer configuration) on the fuel transport and performance of an alkaline MMFC with cylinder anodes. Modeling results suggest that the staggered rod arrangement outperforms the in-line case by 10.1% at 50 μL min–1. Cell power output and power density vary nearly linearly with the cell length. In the case with 0.7 mm anodes and 0.3 mm spacers, the increased flow resistance at anode region drives the fuel to intrude into the spacer zone, leading to fuel transport limitation at downstream. The feasibility of non-spacer configuration is demonstrated, and the power density is 93.7% higher than the baseline due to reduced cell volume and enhanced fuel transport. In addition, horizontal extension of the anode array is found to be more favorable for scale-up, the maximum power density of 181.9 mW cm–3 is predicted. This study provides insight into the fundamental, and offers guidance to improve the cell design for promoting performance and facilitating system integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Y, Leung D Y C, Xuan J, et al. A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell. Renew Sustain Energy Rev, 2017, 75: 775–795

    Article  Google Scholar 

  2. Lee S H, Ahn Y. A laminar flow-based single stack of flow-over planar microfluidic fuel cells. J Power Sources, 2017, 351: 67–73

    Article  Google Scholar 

  3. Escalona-Villalpando R A, Reid R C, Milton R D, et al. Improving the performance of lactate/oxygen biofuel cells using a microfluidic design. J Power Sources, 2017, 342: 546–552

    Article  Google Scholar 

  4. Tanveer M, Kim K Y. Effects of geometric configuration of the channel and electrodes on the performance of a membraneless microfuel cell. Energy Convers Manage, 2017, 136: 372–381

    Article  Google Scholar 

  5. Galindo-de-la-Rosa J, Arjona N, Moreno-Zuria A, et al. Evaluation of single and stack membraneless enzymatic fuel cells based on ethanol in simulated body fluids. Biosens Bioelectron, 2017, 92: 117–124

    Article  Google Scholar 

  6. Martins C A, Ibrahim O A, Pei P, et al. Towards a fuel-flexible direct alcohol microfluidic fuel cell with flow-through porous electrodes: Assessment of methanol, ethylene glycol and glycerol fuels. Electrochim Acta, 2018, 271: 537–543

    Article  Google Scholar 

  7. Yoon S K, Fichtl G W, Kenis P J A. Active control of the depletion boundary layers in microfluidic electrochemical reactors. Lab Chip, 2006, 6: 1516

    Article  Google Scholar 

  8. Jayashree R S, Gancs L, Choban E R, et al. Air-breathing laminar flow-based microfluidic fuel cell. J Am Chem Soc, 2005, 127: 16758–16759

    Article  Google Scholar 

  9. Mousavi Shaegh S A, Nguyen N T, Chan S H, et al. Air-breathing membraneless laminar flow-based fuel cell with flow-through anode. Int J Hydrogen Energy, 2012, 37: 3466–3476

    Article  Google Scholar 

  10. Kjeang E, Michel R, Harrington D A, et al. A microfluidic fuel cell with flow-through porous electrodes. J Am Chem Soc, 2008, 130: 4000–4006

    Article  Google Scholar 

  11. Kjeang E, Michel R, Harrington D A, et al. An alkaline microfluidic fuel cell based on formate and hypochlorite bleach. Electrochim Acta, 2008, 54: 698–705

    Article  Google Scholar 

  12. Kjeang E, McKechnie J, Sinton D, et al. Planar and three-dimensional microfluidic fuel cell architectures based on graphite rod electrodes. J Power Sources, 2007, 168: 379–390

    Article  Google Scholar 

  13. Zhang B, Ye D D, Li J, et al. Air-breathing microfluidic fuel cells with a cylinder anode operating in acidic and alkaline media. Electrochim Acta, 2015, 177: 264–269

    Article  Google Scholar 

  14. Arjona N, Goulet M A, Guerra-Balcazar M, et al. Direct formic acid microfluidic fuel cell with pd nanocubes supported on flow-through microporous electrodes. ECS Electrochem Lett, 2015, 4: F24–F28

    Article  Google Scholar 

  15. Zhang B, Ye D, Sui P C, et al. Computational modeling of airbreathing microfluidic fuel cells with flow-over and flow-through anodes. J Power Sources, 2014, 259: 15–24

    Article  Google Scholar 

  16. Wang Y, Leung D Y C, Xuan J, et al. A vapor feed methanol microfluidic fuel cell with high fuel and energy efficiency. Appl Energy, 2015, 147: 456–465

    Article  Google Scholar 

  17. Gago A S, Morales-Acosta D, Arriaga L G, et al. Carbon supported ruthenium chalcogenide as cathode catalyst in a microfluidic formic acid fuel cell. J Power Sources, 2011, 196: 1324–1328

    Article  Google Scholar 

  18. Morales-Acosta D, Ledesma-Garcia J, Godinez L A, et al. Development of Pd and Pd-Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation. J Power Sources, 2010, 195: 461–465

    Article  Google Scholar 

  19. Zhang B, Ye D, Li J, et al. Electrodeposition of Pd catalyst layer on graphite rod electrodes for direct formic acid oxidation. J Power Sources, 2012, 214: 277–284

    Article  Google Scholar 

  20. Jayashree R S, Egas D, Spendelow J S, et al. Air-breathing laminar flow-based direct methanol fuel cell with alkaline electrolyte. Electrochem Solid-State Lett, 2006, 9: A252

    Article  Google Scholar 

  21. Choban E R, Spendelow J S, Gancs L, et al. Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media. Electrochim Acta, 2005, 50: 5390–5398

    Article  Google Scholar 

  22. Hollinger A S, Maloney R J, Jayashree R S, et al. Nanoporous separator and low fuel concentration to minimize crossover in direct methanol laminar flow fuel cells. J Power Sources, 2010, 195: 3523–3528

    Article  Google Scholar 

  23. Sun F, He H, Huo W. Polymer separator and low fuel concentration to minimize crossover in microfluidic direct methanol fuel cells. Int J Energy Res, 2015, 39: 643–647

    Article  Google Scholar 

  24. Huo W, Zhou Y, Zhang H, et al. Microfluidic direct methanol fuel cell with ladder-shaped microchannel for decreased methanol crossover. Int J Electrochem Sci, 2013, 8: 4827–4838

    Google Scholar 

  25. López-Montesinos P O, Yossakda N, Schmidt A, et al. Design, fabrication, and characterization of a planar, silicon-based, monolithically integrated micro laminar flow fuel cell with a bridge-shaped microchannel cross-section. J Power Sources, 2011, 196: 4638–4645

    Article  Google Scholar 

  26. Whipple D T, Jayashree R S, Egas D, et al. Ruthenium cluster-like chalcogenide as a methanol tolerant cathode catalyst in air-breathing laminar flow fuel cells. Electrochim Acta, 2009, 54: 4384–4388

    Article  Google Scholar 

  27. Kjeang E, Brolo A G, Harrington D A, et al. Hydrogen peroxide as an oxidant for microfluidic fuel cells. J Electrochem Soc, 2007, 154: B1220

    Article  Google Scholar 

  28. Zhu X, Zhang B, Ye D D, et al. Air-breathing direct formic acid microfluidic fuel cell with an array of cylinder anodes. J Power Sources, 2014, 247: 346–353

    Article  Google Scholar 

  29. Lee J W, Kjeang E. Chip-embedded thin film current collector for microfluidic fuel cells. Int J Hydrogen Energy, 2012, 37: 9359–9367

    Article  Google Scholar 

  30. Li L, Bei S, Xu Q, et al. Role of electrical resistance and geometry of porous electrodes in the performance of microfluidic fuel cells. Int J Energy Res, 2018, 42: 1277–1286

    Article  Google Scholar 

  31. Li L, Fan W, Xuan J, et al. Optimal design of current collectors for microfluidic fuel cell with flow-through porous electrodes: Model and experiment. Appl Energy, 2017, 206: 413–424

    Article  Google Scholar 

  32. Li L, Nikiforidis G, Leung M K H, et al. Vanadium microfluidic fuel cell with novel multi-layer flow-through porous electrodes: Model, simulations and experiments. Appl Energy, 2016, 177: 729–739

    Article  Google Scholar 

  33. Wang Y, Leung D Y C, Zhang H, et al. Numerical and experimental comparative study of microfluidic fuel cells with different flow configurations: Co-flow vs. counter-flow cell. Appl Energy, 2017, 203: 535–548

    Article  Google Scholar 

  34. Jayashree R S, Yoon S K, Brushett F R, et al. On the performance of membraneless laminar flow-based fuel cells. J Power Sources, 2010, 195: 3569–3578

    Article  Google Scholar 

  35. Fuerth D, Bazylak A. Up-scaled microfluidic fuel cells with porous flow-through electrodes. J Fluids Eng, 2013, 135: 021102

    Article  Google Scholar 

  36. Yang Y, Ye D, Liao Q, et al. Enhanced biofilm distribution and cell performance of microfluidic microbial fuel cells with multiple anolyte inlets. Biosens Bioelectron, 2016, 79: 406–410

    Article  Google Scholar 

  37. Marschewski J, Ruch P, Ebejer N, et al. On the mass transfer performance enhancement of membraneless redox flow cells with mixing promoters. Int J Heat Mass Transfer, 2017, 106: 884–894

    Article  Google Scholar 

  38. Kwok Y H, Wang Y F, Tsang A C H, et al. Graphene-carbon nanotube composite aerogel with Ru@Pt nanoparticle as a porous electrode for direct methanol microfluidic fuel cell. Appl Energy, 2018, 217: 258–265

    Article  Google Scholar 

  39. Kwok Y H, Tsang A C H, Wang Y, et al. Ultra-fine Pt nanoparticles on graphene aerogel as a porous electrode with high stability for microfluidic methanol fuel cell. J Power Sources, 2017, 349: 75–83

    Article  Google Scholar 

  40. Goulet M A, Ibrahim O A, Kim W H J, et al. Maximizing the power density of aqueous electrochemical flow cells with in operando deposition. J Power Sources, 2017, 339: 80–85

    Article  Google Scholar 

  41. Li Y, He Y, Yang W. A high-performance direct formate-peroxide fuel cell with palladium-gold alloy coated foam electrodes. J Power Sources, 2015, 278: 569–573

    Article  Google Scholar 

  42. Li Y, Feng Y, Sun X, et al. A sodium-ion-conducting direct formate fuel cell: Generating electricity and producing base. Angew Chem Int Ed, 2017, 56: 5734–5737

    Article  Google Scholar 

  43. Li Y, Sun X, Feng Y. Hydroxide self-feeding high-temperature alkaline direct formate fuel cells. ChemSusChem, 2017, 10: 2135–2139

    Article  Google Scholar 

  44. Ye D D, Zhang B, Zhu X, et al. Computational modeling of alkaline air-breathing microfluidic fuel cells with an array of cylinder anodes. J Power Sources, 2015, 288: 150–159

    Article  Google Scholar 

  45. Zhang L, Li J, Zhu X, et al. Anodic current distribution in a liter-scale microbial fuel cell with electrode arrays. Chem Eng J, 2013, 223: 623–631

    Article  Google Scholar 

  46. Krishnamurthy D, Johansson E O, Lee J W, et al. Computational modeling of microfluidic fuel cells with flow-through porous electrodes. J Power Sources, 2011, 196: 10019–10031

    Article  Google Scholar 

  47. Moore S, Sinton D, Erickson D. A plate-frame flow-through microfluidic fuel cell stack. J Power Sources, 2011, 196: 9481–9487

    Article  Google Scholar 

  48. Salloum K S, Posner J D. A membraneless microfluidic fuel cell stack. J Power Sources, 2011, 196: 1229–1234

    Article  Google Scholar 

  49. Wang H, Gu S, Leung D Y C, et al. Development and characteristics of a membraneless microfluidic fuel cell array. Electrochim Acta, 2014, 135: 467–477

    Article  Google Scholar 

  50. Ibrahim O A, Goulet M A, Kjeang E. Microfluidic electrochemical cell array in series: Effect of shunt current. J Electrochem Soc, 2015, 162: F639–F644

    Article  Google Scholar 

  51. Lu X, Wang Y, Leung D Y C, et al. A counter-flow-based dual-electrolyte protocol for multiple electrochemical applications. Appl Energy, 2018, 217: 241–248

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xun Zhu or DingDing Ye.

Electronic supplementary material

11431_2018_9341_MOESM1_ESM.doc

Effect of geometrical configurations on alkaline air-breathing membraneless microfluidic fuel cells with cylinder anodes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Wang, H., Zhu, X. et al. Effect of geometrical configurations on alkaline air-breathing membraneless microfluidic fuel cells with cylinder anodes. Sci. China Technol. Sci. 62, 388–396 (2019). https://doi.org/10.1007/s11431-018-9341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9341-4

Keywords

Navigation