Skip to main content
Log in

Anodic Processes at Smooth Platinum Electrode in Concentrated Solution of Methanesulfonic Acid

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Some features of processes occurring during the polarization of smooth platinum electrode in 10.0 M methanesulfonic acid (CH3SO3H) solution at high anodic potentials are studied by the cyclic voltammetry method. On cyclic voltammograms of smooth platinum electrode in concentrated methanesulfonic acid solution, well-pronounced oxidation waves are observed at potentials E = 2.0–2.5 V and E = 2.9–3.7 V. The electrochemical processes occurring in 10 M CH3SO3H solution within the E = 2.0–2.5 V potential range are shown to be associated with discharge of water molecules; the broad oxidation wave within the potential range of E = 2.9–3.7 V is related to the formation of peroxide compounds. Based on the electrochemical measurements and analysis of products of preparative electrooxidative electrolysis, the formation of a complex organosulfur peroxide compound, bis(methanesulfonyl) peroxide CH3S(O)2OOS(O)2CH3 (other names: dimethyl disulfoperoxide, or dimethanesulfonyl peroxide, or dimesylate peroxide) is established. Anodic oxidation mechanism in concentrated CH3SO3H solutions is proposed. It is supposed that the formation of the peroxide compound is associated with the participation of mesylate-radicals that dimerize at the smooth platinum anode and then are desorbed into the solution bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Gernon, M.D., Wu, M., Buszta, T., and Jaimey, P., Environmental benefits of methane sulfonic acid. Comparative properties and advantages, Green Chem., 1999, vol. 1, no. 3, p. 127.https://doi.org/10.1039/a900157c

  2. Danilov, F.I., Sknar, I.V., and Sknar, Yu.E., Kinetics of nickel electroplating from methanesulfonate electrolyte, Russ. J. Electrochem., 2011, vol. 47, no. 9, p. 1035. https://doi.org/10.1134/S1023193511090114

    Article  CAS  Google Scholar 

  3. Danilov, F.I., Butyrina, T.E., Protsenko, V.S., and Vasil’eva, E.A., Oxidation of Sn(II) in methanesulfonate electrolytes in presence of antioxidants, Russ. J. Appl. Chem., 2010, vol. 83, no.4, p. 752. https://doi.org/10.1134/S1070427210040348

    Article  CAS  Google Scholar 

  4. Bengoa, L.N., Pary, P., Conconi, M.S., and Egli, W.A., Electrodeposition of Cu-Sn alloys from a methanesulfonic acid electrolyte containing benzyl alcohol, Electrochim. Acta, 2017. vol. 256. p. 211. https://doi.org/10.1016/j.electacta.2017.10.027

  5. Velichenlco, A.B., Gruzdeva, E.V., Lukyanenko, T.V., Danilov, F.I., and Amadelli, R., Electrodeposition of lead dioxide from methanesulfonate solutions, J. Power Sources, 2009, vol. 191, no. 1, p. 103.https://doi.org/10.1016/j.jpowsour.2008.10.054

    Article  CAS  Google Scholar 

  6. Comisso, N., Cattarin, S., Guerriero, P., Mattarozzi, L., Musiani, M., and Verlato, E., Electrochemical behavior of porous Pb02 layers prepared by oxygen bubble templated anodic deposition, Electrochim. Acta, 2016, vol. 200, p. 259. https://doi.org/10.1016/j.electacta.2016.03.184

  7. Protsenko, V.S., Kityk, A.A., and Danilov, F.I., Kinetics and mechanism of chromium electrodeposition from methanesulfonate solutions of Cr (III) salts, Surf. Eng. Appl Electrochem., 2014, vol. 50, no. 5, p. 384. https://doi.org/10.3103/S106837551405007X

    Article  Google Scholar 

  8. Walsh, F.C. and Ponce de Leon, C., Versatile electrochemical coatings and surface layers from aqueous methanesulfonic acid, Surf. Coat. Technol. 2014, vol. 259, p. 676. https://doi.org/10.1016/j.surfcoat.2014.10.010

  9. Hasan, M. and Rohan, J.F., Cu Electrodeposition from Methanesulfonate Electrolytes for ULSI and MEMS Applications, J. Electrochem. Soc., 2010, vol. 157, no. 5, p. 278. https://doi.org/10.1149/1.3332729

  10. Shahin, G.E., Electroless nickel plating solutions. Pat. US20030232148A1 (USA). 2002.

  11. Srinivasan, K.N. and John, S., Electroless nickel deposition from methane sulfonate bath, J. Alloys Compd. 2009, vol.486, no. 3, p.447. https://doi.org/10.1016/j.jallcom.2009.06.178

    Article  CAS  Google Scholar 

  12. Huttunen-Saarivirta, E., Observations on the uniformity of immersion tin coatings on copper Surf. Coat. Technol., 2002, vol. 160, no. 3, p. 288. https://doi.org/10.1016/S0257-8972(02)00412-7

    Article  CAS  Google Scholar 

  13. Bengoa, L.N., Tuckart, W.R., Zabala, N., Prieto, G., and Egli, W.A., Tin Coatings Electrodeposited from Sulfonic Acid-Based Electrolytes: Tribological Behavior, J. Mater. Eng. Perform., 2015, vol. 24, no. 6, p.2274. https://doi.org/10.1007/s11665-015-1503-4

  14. Low, C.T.J. and Walsh, F.C., The influence of a perfluorinated cationic surfactant on the electrodeposition of tin from a methanesulfonic acid bath, J. Electroanal. Chem., 2008, vol. 615, p. 91. https://doi.org/10.1016/j.jelechem.2007.11.031

    Article  CAS  Google Scholar 

  15. Walsh, F.C. and Ponce de Leon, C., A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology, Trans. IMF, 2014, vol. 92, no. 2, p. 83. https://doi.org/10.1179/0020296713Z.000000000161

  16. Low, C.T.J., Kerr, C., Ponce-de-Leon, C., and Walsh, F.C., Electrodeposition: Properties, Processes and Applications, New York: Nova Publishers, 2012, p. 283–296.

    Google Scholar 

  17. Mollamahaleh, Y.B., Hosseini, D. Mazaheri, M., and Sadrnezhaad, S.K., Surfactant-Free Production of Ni-Based Nanostructures, Mater. Sci. Appl., 2011, vol. 2, p. 444. https://doi.org/10.4236/msa.2011.25059

    Article  CAS  Google Scholar 

  18. Li, Q., Feng, Z., Liu, L., Sun, J., Qu, Li, Y.F., and An, M., Research on the tribological behavior of a nanocrystalline zinc coating prepared by pulse reverse electrodeposition, RSC Adv., 2015, vol. 5, p. 12025. https://doi.org/10.1039/c4ra13691h

    Article  CAS  Google Scholar 

  19. Tsunoda, K. and Tamura, T., Tetravalent tin salt of metastaimic acid and a trivalent indium salt of an organosulfonic acid, chelating agent, a caustic alkali; cyanide free smootlmess. Pat. US6331240B1 (USA), 2001.

  20. Zanella, C., Xing, S., and Deflorian F., Effect of electrodeposition parameters on chemical and morphological characteristics of Cu-Sn coatings from a methanesulfonic acid electrolyte, Surf. Coat. Technol., 2013, vol. 236, p. 394. https://doi.org/10.1016/j.surfcoat.2013.10.020

    Article  CAS  Google Scholar 

  21. Low, C.T.J., Kerr, C., and Walsh, F.C., Electrodeposition of tin, copper and tin-copper alloys from a methanesulfonic acid electrolyte containing a perfluorinated cationic surfactant, Surf. Coat. Technol., 2008, vol. 202, no. 8, p. 1339. https://doi.org/10.1016/j.surfcoat.2007.06.032

  22. Pewnim, N. and Roy, S., Electrodeposition of tin-rich Cu-Sn alloys from a methanesulfonic acid electrolyte, Electrochim. Acta, 2013, vol. 90, p. 498. https://doi.org/10.1016/j.electacta.2012.12.053

  23. Konetzki, R.A., Chang, Y.A. and Marcotte, V.C., Oxidation kinetics of Pb-Sn alloys, J. Mater. Res., 2011, vol. 4, no. 6, p. 1421. https://doi.org/10.1557/JMR.1989.1421

    Article  Google Scholar 

  24. Goh, Y., Flaseeb, A.S.M.A., Faizul, M., and Sabri, M., Effects of hydroquinone and gelatin on the electrodeposition of Sn-Bi low temperature Pb-free solder, Electrochim. Acta, 2013, vol. 90, p. 265. https://doi.org/10.1016/j.electacta.2012.12.036

  25. Yalcymovych, A. and Ipser, H., Synthesis and characterization of pure Ni and Ni-Sn intermetallic nanoparticles, Nanoscale Res. Lett., 2017, vol. 12, no. 1, p. 142. https://doi.org/10.1186/s11671-017-1894-2

  26. Zhang, Z., Nenoff, T.M., Leung, K., Ferreira, S.-R., et al., Room-temperature synthesis of Ag–Ni and Pd–Ni Alloy Nanoparticles, J. Phys. Chem. C, 2010, vol. 114, no. 34, p. 14309.https://doi.org/10.1021/jp911947v

    Article  CAS  Google Scholar 

  27. Danilov, F.I., Protsenko, V.S., Vasil’eva, E.A., and Kabat, O.S., Antifriction coatings of Pb- Sn-Cu alloy electro-deposited from methanesulphonate bath, Trans. IMF, 2011, vol. 89, no. 3, p. 151. https://doi.org/10.1179/174591911X12977017699347

    Article  CAS  Google Scholar 

  28. Nogita, K., Gourlay, C.M., and Nishimura, T., Cracking and phase stability in reaction layers between Sn-Cu–Ni solders and Cu substrates, JOM, 2009, vol. 61, no. 6, p. 45. https://doi.org/10.1007/s11837-009-0087-6

  29. Walsh, F.C. and Ponce de Leon, C., A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: An established and diversifying technology, Trans. IMF, 2014, vol. 92, no. 2, p. 83. https://doi.org/10.1179/0020296713Z.000000000161

    Article  CAS  Google Scholar 

  30. Sun, X.J. and Li, J.G., Friction and wear properties of electrodeposited nickel-titania nanocomposite coatings, Tribol. Lett., 2007, vol. 28, p. 223. https://doi.org/10.1007/s11249-007-9254-5

  31. Caramia, V., Walsh, F.C. Ponce de Leon, C., and Low, C.T.J., Anodic deposition of compact, freely-standing or microporons polypyrroie films from aqueons methanesuiphonic acid, Trans. IMF, 2015, vol. 93, no. 3, p. 139. https://doi.org/10.1179/0020296714Z.000000000203

    Article  CAS  Google Scholar 

  32. Sanglee, K., Chuangchote, S., Chaiwiwatworakul, P., and Kumnorkaew, P., PEDOT:PSS Nanofilms Fabricated by a Nonconventional Coating Method for Uses as Transparent Conducting Electrodes in Flexible Electrochromic Devices, J. Nanomater., 2017, vol. 4, p. l. https://doi.org/10.1155/2017/5176481

    Article  CAS  Google Scholar 

  33. Tan, L.S., Simlco, S.R., Bal, S.J., Vaia, R.A., et al., Phase of separated, conducting composites from polyaniline and benzobisthiazole rigid of rod polymer, J. Polym. Sci. B Polym. Phys., 2001, vol. 39, p. 2539. https://doi.org/10.1002/polb.1224

  34. Yasushi, A.K., Suzuki, T. T., and Kobata, T.S. Electrolytic liquid for electrolytic polishing and electrolytic polishing method. Patent US20080067077A1 (USA). 2008.

  35. Jing, N., Riddle, J. A., Yu, Z., Xiong, M., Wang, Z., Chu, Y., Pan, R., Tiers, G.V.D., and Brown, K.A., Coating composition and method of making and using the same, Pat. 9944822B2 (USA), 2013.

  36. Helle, K. and Walsh, F.C., Electrodeposition of composite layers consisting of inert inclusions in a metal matrix, Trans. IMF, 1997, vol. 75, p. 53. https://doi.org/10.1080/00202967.1997.11871143

    Book  Google Scholar 

  37. Bicelli, L.P., Bozzini, Mele, B.C., and D’Urzo, L., A review of nanostructural aspects of metal electrodeposition, Int. J. Electrochem. Soc., 2008, vol. 3, no. 4, p. 356.

    CAS  Google Scholar 

  38. Vasil’eva, E.A., Semenova, I.V., Protsenko, V.S., Konstantinova, T.E., and Danilov, F.I., Electrodeposition of hard iron-zirconia dioxide composite coatings from a methanesulfonate electrolyte, Russ. J. Appl. Chem., 2013, vol. 86, no. 11, p. l735. https://doi.org/10.1134/S1070427213110177

    Article  CAS  Google Scholar 

  39. Low, C.T.J., de la Toba Corral, M., and Walsh, F.C. Anodising of titanium in methanesulphonic acid to form titanium dioxide nanotube arrays, Trans. IMF, 2011, vol. 89, no. l, p. 44. https://doi.org/10.1179/174591911X12953503084903

    Article  CAS  Google Scholar 

  40. Lee, K., Kim, D., Berger, S., Kirchgeorg, R., and Schmuki, P., Anodically formed transparent mesoporous TiO2 electrodes for high electrochromic contrast, J. Mater. Chem., 2012, vol. 22, no. 19, p. 9821. https://doi.org/10.1039/c2jm31244a

    Article  CAS  Google Scholar 

  41. Couper, A.M., Pletcher, D., and Walsh, F.C., Electrode materials for electrosynthesis, Chem. Rev., 1990, vol. 90, no. 5, p. 837. https://doi.org/10.1021/cr00103a010

    Article  CAS  Google Scholar 

  42. Li, X., Pletcher, D., and Walsh, F.C., Electrodeposited lead dioxide coatings, Chem. Soc. Rev. 2011, vol. 40, no. 7, p. 3879. https://doi.org/10.1039/c0cs00213e

    Article  CAS  PubMed  Google Scholar 

  43. Ambika, C., Flirankumar, G., Thanikaikarasan, S., Lee, K.K., Valenzuela, E., and Sebastian, P.J., Influence of TiO2 as filler on the discharge characteristics of a proton battery. J. New Mater. Electrochem. Syst., 2015, vol. 18, no. 4, p. 219.https://doi.org/10.14447/jnmes.v18i4.351

  44. Arenas, L.F., Walsh, F.C., and Ponce de Leon, C., The Importance of Cell Geometry and Electrolyte Properties to the Cell Potential of Zn-Ce Hybrid Flow Batteries, J. Electrochem. Soc., 2016, vol. 163, no. 1, p. A5170. https://doi.org/10.1149/2.0261601jes

    Article  CAS  Google Scholar 

  45. Dong, J, Wu, X., Chen, Y., Brandon, N., Li, X., Yang, J., et al., A study on Pb2+/Pb electrodes for soluble lead redox flow cells prepared with methanesulfonic acid and recycled lead, J. Appl. Electrochem., 2016, vol. 46, no. 8, p. 861. https://doi.org/10.1007/s10800-016-0980-y

    Article  CAS  Google Scholar 

  46. Govindan, M., He, K., and Moon, I.S., Evaluation of dual electrochemical cell design for cerium-vanadium redox flow battery to use different combination of electrodes, Int. J. Electrochem. Sci., 2013, vol. 8, no. 6, p. 10265.

    CAS  Google Scholar 

  47. Kulova, T.L. and Skundin, A.M., High-voltage materials for positive electrodes of lithium ion batteries (review), Russ. J. Electrochem., 2016, vol. 52, no. 6, p. 501.https://doi.org/10.1134/S1023193516060070

  48. Lutropur methanesulfonic acid—the friendly acid. The purest form of methanesulfonic acid methanesulfonic acid made by BASF, BASF report, 2011. https://goo-gl.ru/5jUq

  49. Akmedov, M.A. and Khidirov, Sh.Sh., Voltametric determination of the composition and properties of methane sulfonic acid, J. Struct. Chem., 2014, vol. 55, no. 6, p. 1148. https://doi.org/10.1134/S0022476614060249

    Article  CAS  Google Scholar 

  50. O’Reilly, M.E., Kim, R.S., Oh, S., and Surendranath, Y., Catalytic Methane Monofunctionalization by an Electrogenerated High-Valent Pd Intermediate, ACS Cent. Sci., 2017, vol. 3, no. 11, p. 1174. https://doi.org/10.1021/acscentsci.7b00342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Akhmedov, M.A., Khidirov, Sh. Sh., Koparova, M.Y., and Kliibiev, Kh. S., Electrochemical synthesis of methanesulfonic acid from aqueous solutions of dimethylsulfone, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2016, vol. 59, no. 12, p. 100. https://doi.org/10.6060/tcct.20165912.5345

    Article  CAS  Google Scholar 

  52. Khidirov, Sh.Sh., Akhmedov, M.A., Kliibiev, Kli.S., and Akhmedov, Sh.V., Electrochemical modification of cellulose, Bulletin DSU (in Russian), 2015, no. 6, p. 191.

  53. Khidirov, Sh.Sh., Kliibiev, K.S., and Akhmedov, M.A., Electrochemical Synthesis of Cellulose Mesylates, Pharmaceutical Chem. J., 2017, vol. 50, no. 12, p. 817. https://doi.org/10.1007/s11094-017-1539-x

  54. Petrii, O.A., Zero charge potentials of platinum metals and electron work functions (Review), Russ. J. Electrochem., 2013, vol. 49, no. 5, p. 401. https://doi.org/10.1134/S1023193513050145

    Article  CAS  Google Scholar 

  55. Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Electrochemistry (in Russian), Moscow: Lan, 2008.

  56. Komarova, N.V. and Kamentsev, Ya.S., A Practical Guide to the Use of Capillary Electrophoresis Systems “Kapel” (in Russian), St. Petersburg: Veda, 2006, 212 p.

    Google Scholar 

  57. P 4.2.2643-10 The Methods for laboratory testing and testing of disinfectants for their effectiveness and safety: Management (in Russian), Moscow: FCH and E. Rospotrebnadzor, 2010, p. 34, 35.

  58. Tomilov, A.P., Mayranovskii, S.G., Fioshin, M.Ya., and Smirnov, V.A., Elecirochemistiy of Organic Compounds (in Russian), Moscow: Khimiya, 1968, p. 54.

    Google Scholar 

  59. Zhuravlev, A. I. and Trostnikov, V.N., Glow of Living Tissues (in Russian), Moscow: Nauka, 1966.

    Google Scholar 

  60. Chackalackal, S.M. and Stafford, F.E., Infrared Spectra of Methane-, Fluoro-, and Chlorosulfonic Acids, JACS, 1966, vol. 88, no. 21, p. 4815–1819. https://doi.org/10.1021/ja00973a010

    Article  CAS  Google Scholar 

  61. Pentin, Yu.A. and Kuramshina, G.M., The fundamentals of molecular spectroscopy (in Russian), Moscow: Mir, 2008.

  62. Zeng, X., Beckers, H., Willner, FI., and Lehmann, C.W., Bis(methanesulfonyl) Peroxide, CH3S(O)2OOS(O)2CH3: Spectroscopic, Structural, and Thermal Properties, Z. Anorg. Allg. Chem., 2010, vol. 636, no. 13–14, p. 2447. https://doi.org/10.1002/zaac.201000184

    Article  CAS  Google Scholar 

  63. Zhu, B., Zeng, X., Beckers, FI., Francisco, J.S., and Willner, H., The Methylsulfonyloxyl Radical, CH3SO3, Angew. Chem. Int. Ed., 2015, vol. 54, no. 39, p. 11404. https://doi.org/10.1002/anie.201503776

    Article  CAS  Google Scholar 

  64. Korth, H.G., Neville, A.G., and Lusztyk, J., Direct spectroscopic detection of sulfonyloxyl radicals and first measurements of their absolute reactivities, J. Phys. Chem., 1990, vol. 94, no. 25, p. 8835. https://doi.org/10.1021/j100388a017

    Article  CAS  Google Scholar 

  65. Haszeldine, R.N., Heslop, R.B., and Lethbridge, J.W., The properties and reactions of dimethanesulphonyl peroxide, J. Chem. Soc., 1964, p. 4901. https://doi.org/10.1039/jr9640004901

  66. Applied Electrochemistry, (in Russian), 2nd Edition, Moscow: Khimiya, 1975.

  67. Hawkins, E.G.E., Organic Peroxides: Their Formation and Reactions, London: Spon, 1961.

    Google Scholar 

  68. Yablonsky, O.P., Belyaev, V.A., and Vinogradov, A.N. Association of Hydroperoxides of Hydrocarbons, Russ. Chem. Rev., 1972, vol. 61, no. 7, p. 1260.

    Google Scholar 

  69. Antonovskii, V.L. and Khursan, S.L., Physical Chemistry of Organic Peroxides (in Russian), Moscow: Akademkniga, 2003.

    Google Scholar 

  70. Carlos, G., Comiran, E., de Oliveira, M.H., Limberger, R.P., Bergold, A.M., and Froehlich, P.E., Development, validation and comparison of two stability-indicating RP-LC methods using charged aerosol and UV detectors for analysis of lisdexamfetamine dimesylate in capsules, Arab. J. Chem., 2016, vol. 9, no. 12, p. 1905. https://doi.org/10.1016/j.arabjc.2015.06.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Akhmedov or Sh. Sh. Khidirov.

Additional information

Translated by Yu. Pleskov

Based on the paper presented at the XIV Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka (Russia), September 9–13, 2018.

Supplementary materials are available for this article https://doi.org/10.1134/S1023193519060028 and are accessible for authorized users.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmedov, M.A., Khidirov, S.S. Anodic Processes at Smooth Platinum Electrode in Concentrated Solution of Methanesulfonic Acid. Russ J Electrochem 55, 579–589 (2019). https://doi.org/10.1134/S1023193519060028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519060028

Keywords:

Navigation