Skip to main content
Log in

The Mechanism and Corrosion Behavior of Zn–Fe–Co Film Electrochemically Deposited on a Steel Substrate: Influence of Deposition Time and Co Ion Concentration

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this report, the mechanism of electrodeposition of Zn–Fe–Co alloy on a steel surface at different deposition time and concentrations of cobalt ions was precisely investigated. To clarify the deposition mechanism, various electrochemical methods were applied. In particular, potentiodynamic polarization was used to ascertain the corrosion behavior of the deposited films. The results indicate that the increase of the sweeping rate and the increase of the Co2+ concentrations in the deposition bath leads to a significant improvement for the steel anti-corrosion takes place. The film contents were carefully analyzed by AAS and EDX. Furthermore, the coated films were also characterized by SEM and XRD to identify the surface morphology and structure, respectively. The alloys electrodeposition, under the used experimental conditions, was an anomalous type. The outcomes indicate the following series of events: Co ions adsorbed on the substrate in the first few seconds; followed by adsorption of Fe ions and then Zn ions onto the freshly adsorbed and deposited Co, means that the normal codeposition. With time progressing, the adsorption of zinc ions suppresses the subsequent accumulation of iron and cobalt, although it does not completely block it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Liu, Z., Cui, T., Pulletikurthi, G., Lahiri, A., Carstens, T., and Olschewski, M., Dendrite-free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn-based batteries, Angew. Chem. Int. Ed., 2016, vol. 55, p. 2889. https://doi.org/10.1002/anie.201509364

    Article  CAS  Google Scholar 

  2. Hu, C., Xie, X., Zheng, H., Qing, Y., and Ren, K., Facile fabrication of superhydrophobic zinc coatings with corrosion resistance via an electrodeposition process, New J. Chem., 2020, vol. 44, p. 8890. https://doi.org/10.1039/D0NJ00561D

    Article  CAS  Google Scholar 

  3. Conrad, H.A., McGuire, M.R., Zhou, T., Coskun, M.I., and Golden, T.D., Improved corrosion resistant properties of electrochemically deposited zinc–nickel alloys utilizing a borate electrolytic alkaline solution, J. Coat. Technol. Res., 2015, vol. 272, p. 50. https://doi.org/10.1016/j.surfcoat.2015.04.025

    Article  CAS  Google Scholar 

  4. Assaf, F.H., Eissa, A.A., and Abou-Krisha, M.M., Electrodeposition mechanism of Zn‒Ni‒Mn alloy at different time intervals, Russ. J. Appl. Chem., 2018, vol. 91, p. 510. https://doi.org/10.1134/S1070427218030254

    Article  CAS  Google Scholar 

  5. Wykpis, K., Niedbala, J., Popczyk, M., Budniok, A., and Lagiewka, E., The electrodeposition and properties of Zn–Ni + Ni composite coatings, Russ. J. Electrochem., 2012, vol. 48, p. 1123. https://doi.org/10.1134/S1023193512080149

    Article  CAS  Google Scholar 

  6. Kasach, A.A., Kharitonov, D.S., Radchenko, S.L., Zharskii, I.M., and Kurilo, I.I., Effect of parameters of pulse electrolysis on electrodeposition of copper–tin alloy from sulfate electrolyte, Russ. J. Electrochem., 2020, vol. 56, p. 744. https://doi.org/10.1134/S1023193520090049

    Article  CAS  Google Scholar 

  7. Hussein, R.K., Abou-Krisha, M.M., and Yousef, T.A., Theoretical and experimental studies of different amine compounds as corrosion inhibitors for aluminum in hydrochloric acid, Biointerface Res. Appl. Chem., 2021, vol. 11, p. 9772. https://doi.org/10.33263/BRIAC112.97729785

    Article  CAS  Google Scholar 

  8. Assaf, F.H., Abou-Krisha, M.M., Daoush, W.M., and Eissa, A.A., Fabrication of Zn–Ni–Mn alloy by electrodeposition and its characterization, Corros. Rev., 2018, vol. 36, p. 547. https://doi.org/10.1515/corrrev-2018-0003

    Article  CAS  Google Scholar 

  9. Mehl, S., Toghan, A., Bauer, T., Brummel, O., Taccardi, N., Wasserscheid, P., and Libuda, J., Pd nanoparticle formation in ionic liquid thin films monitored by in situ vibrational spectroscopy, Langmuir, 2015, vol. 31, p. 12126. https://doi.org/10.1021/acs.langmuir.5b03386

    Article  CAS  PubMed  Google Scholar 

  10. Abou-Krisha, M.M., Rageh, H.M., and Matter, E.A., Electrochemical studies on the electrodeposited Zn–Ni–Co ternary alloy in different media, Surf. Coat. Technol., 2008, vol. 202, p. 3739. https://doi.org/10.1016/j.surfcoat.2008.01.015

    Article  CAS  Google Scholar 

  11. Faid, H., Mentar, L., Khelladi, M.R., and Azizi, A., Deposition potential effect on surface properties of Zn–Ni coatings, Surf. Eng., 2017, vol. 33, p. 529. https://doi.org/10.1080/02670844.2017.1287836

    Article  CAS  Google Scholar 

  12. Eliaz, N., Venkatakrishna, K., and Chitharanjan, H.A., Electroplating and characterization of Zn–Ni, Zn–Co and Zn–Ni–Co alloys, Surf. Coat. Technol., 2010, vol. 205, p. 1969. https://doi.org/10.1016/j.surfcoat.2010.08.077

    Article  CAS  Google Scholar 

  13. Abou-Krisha, M.M., Assaf, F.H., Alduaij, O.K., and Eissa, A.A., Deposition potential influence on the electrodeposition of Zn–Ni–Mn alloy, Trans. Indian Inst. Met., 2017, vol. 70, p. 31. https://doi.org/10.1007/s12666-016-0859-y

    Article  CAS  Google Scholar 

  14. Assaf, F.H., Abou-Krisha, M.M., Yousef, T.A., Abushoffa, A.M., El-Sheref, F., and Toghan, A., Influence of current density on the mechanism of electrodeposition and dissolution of Zn–Fe–Co alloys, Russ. J. Phys. Chem. A, 2020, vol. 94, p. 1708. https://doi.org/10.1134/S0036024420080026

    Article  CAS  Google Scholar 

  15. Abou-Krisha, M.M., Assaf, F.H., and El-Naby, S.A., The influence of Fe2+ concentration and deposition time on the corrosion resistance of the electrodeposited zinc–nickel–iron alloys, Arab. J. Chem., 2016, vol. 9, p. S1349. https://doi.org/10.1016/j.arabjc.2015.10.008

    Article  CAS  Google Scholar 

  16. Bhat, R. and Hegde, A.C., Studies electrodeposited Zn–Fe alloy coating on mild steel and its characterization, J. Electrochem. Sci. Eng., 2019, vol. 9, p. 9. https://doi.org/10.5599/jese.565

    Article  CAS  Google Scholar 

  17. Abou-Krisha, M.M., Influence of Ni2+ concentration and deposition potential on the characterization of thin electrodeposited Zn–Ni–Co coatings, Mater. Chem. Phys., 2011, vol. 125, p. 621. https://doi.org/10.1016/j.matchemphys.2010.10.007

    Article  CAS  Google Scholar 

  18. Abou-Krisha, M.M., Assaf, F.H., and Toghan, A.A., Electrodeposition of Zn–Ni alloys from sulfate bath, J. Solid State Electrochem., 2007, vol. 11, p. 244. https://doi.org/10.1007/s10008-006-0099-x

    Article  CAS  Google Scholar 

  19. Abou-Krisha, M.M., Assaf, F.H., and El-Naby, S.A., Electrodeposition behavior of zinc–nickel–iron alloys, from sulfate bath, J. Coat. Technol. Res., 2009, vol. 6, p. 391. https://doi.org/10.1007/s11998-008-9134-4

    Article  CAS  Google Scholar 

  20. Brenner, A., Electrodeposition of Alloys, New York: Acad. Press, 1963, vol. 2, p. 194.

    Google Scholar 

  21. Dahms, H. and Croll, I.M., The anomalous codeposition of nickel–iron alloys, J. Electrochem. Soc., 1965, vol. 112, p. 771. https://doi.org/10.1149/1.2423692

    Article  CAS  Google Scholar 

  22. Yunus, M., Capel-Boute, C., and Decroly, C., Inhibition effect of zinc on the cathodic deposition of cobalt-I. Electrochemical and structural observations in sulphate solutions, Electrochim. Acta, 1965, vol. 10, p. 885. https://doi.org/10.1016/0013-4686(65)80001-9

    Article  CAS  Google Scholar 

  23. Mindowicz, J., Capel-Boute, C., and Decroly, C., Inhibition effect of zinc on the cathodic deposition of cobalt-II. Potentiodynamic and intensiodynamic curves in chloride solutions, Electrochim. Acta, 1965, vol. 10, p. 901. https://doi.org/10.1016/0013-4686(65)80002-0

    Article  CAS  Google Scholar 

  24. Lana, C.J., Liua, W.Y., Kea, S.T., and Chin, T.S., Potassium salt based alkaline bath for deposition of Zn–Fe alloys, J. Coat. Technol. Res., 2006, vol. 201, p. 3103. https://doi.org/10.1016/j.surfcoat.2006.06.027

    Article  CAS  Google Scholar 

  25. Hosseini, M.G., Ashassi-Sorkhabi, H., and Ghiasvand, H.A.Y., Electrochemical studies of Zn–Ni alloy coatings from non-cyanide alkaline bath containing tartrate as complexing agent, J. Coat. Technol. Res., 2008, vol. 202, p. 2897. https://doi.org/10.1016/j.surfcoat.2007.10.022

    Article  CAS  Google Scholar 

  26. Akiyama, T. and Fukushima, H., Recent study on the mechanism of the electrodeposition of iron-group metal alloys, ISIJ Int., 1992, vol. 32, p. 787. https://doi.org/10.2355/isijinternational.32.787

    Article  CAS  Google Scholar 

  27. Fukushima, H., Akiyama, T., Yano, M., Ishikawa, T., and Kammel, R., Electrodeposition behavior of Zn–iron-group metal alloys from sulfate and chloride baths, ISIJ Int., 1993, vol. 33, p. 1009. https://doi.org/10.2355/isijinternational.33.1009

    Article  CAS  Google Scholar 

  28. Tsuru, T., Kobayashi, S., Akiyama, T., Fukushima, H., Gogia, S.K., and Kammel, R., Electrodeposition behaviour of zinc–iron group metal alloys from a methanol bath, J. Appl. Electrochem., 1997, vol. 27, p. 209. https://doi.org/10.1023/A:1018460109175

    Article  CAS  Google Scholar 

  29. Charoen-Amornkitt, P., Suzuki, T., and Tsushima, S., Ohmic resistance and constant phase element effects on cyclic voltammograms using a combined model of mass transport and equivalent circuits, Electrochim. Acta, 2017, vol. 258, p. 433. https://doi.org/10.1016/j.electacta.2017.11.079

    Article  CAS  Google Scholar 

  30. Díaz-Arista, P., Meas, Y., Ortega, R., and Trejo, G., Electrochemical and AFM study of Zn electrodeposition in the presence of benzylideneacetone in a chloride-based acidic bath, J. Appl. Electrochem., 2005, vol. 35, p. 217. https://doi.org/10.1007/s10800-004-6304-7

    Article  CAS  Google Scholar 

  31. Haque, F., Rahman, M., Ahmed, E., Bakshi, P., and Shaikh, A., A cyclic voltammetric study of the redox reaction of Cu(II) in presence of ascorbic acid in different pH media, Dhaka Univ. J. Sci., 2013, vol. 61, p. 161. https://doi.org/10.3329/dujs.v61i2.17064

    Article  CAS  Google Scholar 

  32. El Fazazi, A., Ouakki, M., and Cherkaoui, M., Electrochemical deposition of zinc on mild steel, Mediterr. J. Chem., 2019, vol. 8, p. 30. https://doi.org/10.13171/mjc8119021318mo

    Article  CAS  Google Scholar 

  33. Gomez, E., Liorente, A., and Valles, E., Obtention and characterisation of cobalt+copper electrodeposits from a citrate bath, J. Electroanal. Chem., 2000, vol. 495, p. 19. https://doi.org/10.1016/S0022-0728(00)00376-4

    Article  CAS  Google Scholar 

  34. Correia, A.N. and Machado, S.A.S., Anodic linear sweep voltammetric analysis of Ni–Co alloys electrodeposited from dilute sulfate baths, J. Appl. Electrochem., 2003, vol. 33, p. 367. https://doi.org/10.1023/A:1024457930014

    Article  CAS  Google Scholar 

  35. Gomez, E., Alcobe, X., and Valles, E., Characterisation of zinc+cobalt alloy phases obtained by electrodeposition, J. Electroanal. Chem., 2001, vol. 505, p. 54. https://doi.org/10.1016/S0022-0728(01)00450-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mortaga Abou-Krisha or Arafat Toghan.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortaga Abou-Krisha, Toghan, A., Assaf, F. et al. The Mechanism and Corrosion Behavior of Zn–Fe–Co Film Electrochemically Deposited on a Steel Substrate: Influence of Deposition Time and Co Ion Concentration. Russ J Electrochem 58, 284–295 (2022). https://doi.org/10.1134/S1023193522040036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522040036

Keywords:

Navigation