Skip to main content
Log in

Conductivity and Mechanical Properties of Lithium-Conducting Ceramic Solid Electrolytes with the NASICON Structure

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical and mechanical characteristics of ceramic solid electrolytes Li1 + xAlxTi(Ge)2 – x(PO4)3 with the high Li-ionic conductivity and the NASICON crystal structure are considered. The ionic conductivity of solid electrolytes is studied by the method of electrochemical impedance spectroscopy in the frequency interval from 10 to 2 × 106 Hz. The transfer numbers of Li+ ions and the electronic conductivity are determined by potentiostatic chronoamperometry. The elastic and mechanical properties of ceramics are studied by the contact method by means of a probe microscope-nanohardness tester Nanoskan. The microhardness data obtained by comparable sclerometry and Young’s modulus determined based on cantilever approach curves are shown. The critical stress intensity factor for stresses of the first kind KIC is determined for ceramic solid electrolytes Li1 + xAlxTi(Ge)2 – x(PO4)3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Xu, R.C., Xia, X.H., Zhang, S.Z., Xie, D., Wang, X.L., and Tu, J.P., Interfacial challenges and progress for inorganic all-solid-state lithium batteries, Electrochim. Acta, 2018, vol. 284, p. 177.

    Article  CAS  Google Scholar 

  2. Wolfenstine, J., Allen, J.L., Sakamoto, J., Siegel, D.J., and Choe, H., Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review, Ionics, 2018, vol. 24, p. 1271. https://doi.org/10.1007/s11581-017-2314-4

    Article  CAS  Google Scholar 

  3. Yu, X. and Manthiram, A., Electrochemical energy storage with mediator-ion solid electrolytes, Joule, 2017, vol. 1, no. 3, p. 453.

    Article  CAS  Google Scholar 

  4. Manthiram, A., Yu, X., and Wang, S., Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mat., 2017, vol. 2, p. 16103. https://doi.org/10.1038/natrevmats.2016.103

    Article  CAS  Google Scholar 

  5. Deiner, L.J., Bezerra, C.A.G., Howell, T.G., and Powell A.S., Digital printing of solid-state lithium-ion batteries, Adv. Eng. Mater., 2019, vol. 21, p. 1900737. https://doi.org/10.1002/adem.201900737

    Article  CAS  Google Scholar 

  6. Goodenough, J.B. and Singh, P., Review – Solid electrolytes in rechargeable electrochemical cells, J. Electrochem. Soc., 2015, vol. 162, p. A2387.

    Article  CAS  Google Scholar 

  7. Zheng, F., Kotobuki, M., Song, S., Lai, M.O., and Lu, L., Review on solid electrolytes for all-solid-state lithium-ion batteries, J. Power Sources, 2018, vol. 389, p. 198. https://doi.org/10.1016/j.jpowsour.2018.04.022

    Article  CAS  Google Scholar 

  8. Hou, M., Liang, F., Chen, K., Dai, Y., and Xue, D., Challenges and perspectives of NASICON-type solid electrolytes for all solid-state lithium batteries, Nanotechnology, 2020, vol. 31, p. 132003.

    Article  CAS  Google Scholar 

  9. Kunshina, G.B., Efremov, V.V., and Lokshin, E.P., Microstructure and ionic conductivity of lithium–aluminum titanophosphate, Russ. J. Electrochem., 2013, vol. 49, p. 725.

    Article  CAS  Google Scholar 

  10. Kunshina, G.B., Bocharova, I.V., and Ivanenko, V.I., Preparation of the Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with high ionic conductivity, Inorg. Mater. Appl. Res., 2017, vol. 8, no. 2, p. 238. https://doi.org/10.1134/S2075113317020137

    Article  Google Scholar 

  11. Fu, J., Fast Li+ ion conducting glass-ceramics in the system Li2O–Al2O3–GeO2–P2O5, Solid State Ionics, 1997, vol. 104, p. 191.

    Article  CAS  Google Scholar 

  12. Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka N., and Adachi, G., Ionic conductivity of solid electrolytes based on lithium titanium phosphate, J. Electrochem. Soc., 1990, vol. 137, no. 4, p. 1023.

    Article  CAS  Google Scholar 

  13. Kotobuki, M., Lei, H., Chen, Y., Song, S., Xu, C., Hu, N., Molenda, J., and Lu, L., Preparation of thin solid electrolyte by hot-pressing and diamond wire slicing, RSC Adv., 2019, vol. 9, p. 11670.

    Article  CAS  Google Scholar 

  14. Huang, Y., Jiang, Y., Zhou, Y., Hu, Z., and Zhu, X., Influence of liquid solutions on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes, ChemElectroChem., 2019, vol. 6, p. 6016.

    Article  CAS  Google Scholar 

  15. He, S. and Xu, Y., Hydrothermal-assisted solid-state reaction synthesis of high ionic conductivity Li1 + xAlxTi2 – x(PO4)3 ceramic solid electrolytes: The effect of Al3+ doping content, Solid State Ionics, 2019, vol. 343, p. 115078.

    Article  CAS  Google Scholar 

  16. Mariappan, C.R., Yada, C., Rosciano, F., and Roling, B., Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics, J. Power Sources, 2011, vol. 196, p. 6456.

    Article  CAS  Google Scholar 

  17. Cretin, M. and Fabry, P., Comparative study of lithium ion conductors in the system \({\text{L}}{{{\text{i}}}_{{{\text{1}} + x}}}{\text{A}}{{{\text{l}}}_{x}}{\text{A}}_{{{\text{2}} - x}}^{{{\text{IV}}}}{{\left( {{\text{P}}{{{\text{O}}}_{{\text{4}}}}} \right)}_{{\text{3}}}}\) with AIV = Ti or Ge and 0 ≤ x ≤ 0.7 for use as Li+ sensitive membranes, J. Eur. Ceram. Soc., 1999, vol. 19, p. 2931.

    Article  CAS  Google Scholar 

  18. Lu, X., Wang, R., Zhang, F., and Li, J., The influence of phosphorous source on the properties of NASICON lithium-ion conductor Li1.3Al0.3Ti1.7(PO4)3, Solid State Ionics, 2020, vol. 354, p. 115417.

    Article  CAS  Google Scholar 

  19. Yan, B. Zhu, Y., Pan, F., Liu, J., and Lu, L., Li1.5Al0.5Ge1.5(PO4)3 Li-ion conductor prepared by melt-quench and low temperature pressing, Solid State Ionics, 2015, vol. 278, p. 65.

    Article  CAS  Google Scholar 

  20. Perez-Estebanez, M., Isasi-Marín, J., Rivera-Calzada, Leon, A.C., and Nygren, M., Spark plasma versus conventional sintering in the electrical properties of Nasicon-type materials, J. Alloys Compd., 2015, vol. 651, p. 636.

    Article  CAS  Google Scholar 

  21. Kunshina, G.B., Efremov, V.V., and Belyaevsky, A.T., Ionic transport study of the solid electrolytes with NASICON structure by the impedance spectroscopy method, Trudy Kol’skogo Nauchnogo Tsentra Rossiiskoi Akademii Nauk, 2015, no. 31, p. 389.

  22. Xu, X., Wen, Z., Wu, X., Yang, X., and Gu, Z., Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3xLi2O (x = 0.0–0.20) with good electrical and electrochemical properties, J. Am. Ceram. Soc. 2007, vol. 90, no.9, p. 2802. https://doi.org/10.1111/j.1551-2916.2007.01827.x

    Article  CAS  Google Scholar 

  23. Sun, Z., Liu, L., Lu, Y., Shi, G., Li, J., Ma, L., Zhao, J., and An, H., Preparation and ionic conduction of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte using inorganic germanium as precursor, J. Eur. Ceram. Soc. 2019, vol. 39, issues 2–3, p. 402.

    Article  CAS  Google Scholar 

  24. Kobi, S. and Mukhopadhyay, A., Structural (in)stability and spontaneous cracking of Li–La-zirconate cubic garnet upon exposure to ambient atmosphere, J. Eur. Ceram. Soc., 2018, vol. 38, p. 4707.

    Article  CAS  Google Scholar 

  25. Kunshina, G.B., Ivanenko, V.I., and Bocharova, I.V., Synthesis and study of conductivity of Al-substituted Li7La3Zr2O12, Russ. J. Electrochem., 2019, vol. 55, p. 558.

    Article  CAS  Google Scholar 

  26. Han, F., Westover, A.S., Yue, J., Fan, X., Wang, F., Chi, M., Leonard, D.N., Dudney, N.J., Wang, H., and Wang, C., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nat. Energy, 2019, vol. 4, p. 187.

    Article  CAS  Google Scholar 

  27. Oliver, W.C. and Pharr, G.M., Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res., 2004, vol. 19, iss. 1, p. 3. https://doi.org/10.1557/jmr.2004.19.1.3

    Article  CAS  Google Scholar 

  28. Maslenikov, I.I., Reshetov, V.N., and Useinov, A.S., Mapping the elastic modulus of a surface with a NanoScan 3D scanning microscope, Instrum. Exp. Tech., 2015, vol. 58, p. 711. https://doi.org/10.1134/S0020441215040223

    Article  Google Scholar 

  29. Chantikul, P., Anstis, G.R., Lawn B.R., and Marshall, D.B., A Critical evaluation of indentation techniques for measuring fracture toughness: II, Strength method, J. Am. Ceram. Soc., 1981, vol. 64, no. 9, p. 539. https://doi.org/10.1111/j.1151-2916.1981.tb10321.x

    Article  CAS  Google Scholar 

  30. Jackman, S.D. and Cutler, R.A., Effect of microcracking on ionic conductivity in LATP, J. Power Sources, 2012, vol. 218, p. 65. https://doi.org/10.1016/j.jpowsour.2012.06.081

    Article  CAS  Google Scholar 

  31. Yan, G., Yu, S., Nonemacher, J.F., Tempel, H., Kungl, H., Malzbender, J., Eichel, R.-A., and Kruger, M., Influence of sintering temperature on conductivity and mechanical behavior of the solid electrolyte LATP, Ceram. Int., 2019, vol. 45, no. 12, p. 14697. https://doi.org/10.1016/j.ceramint.2019.04.191

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Electron-microscopic and thermogravimetric investigations were carried out with the use of equipment of the Center of Collective Use at the Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science Center, Russian Academy of Sciences

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Kunshina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Based on the materials of the report at the 15th International Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka, 30.11.–07.12.2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunshina, G.B., Shcherbina, O.B. & Bocharova, I.V. Conductivity and Mechanical Properties of Lithium-Conducting Ceramic Solid Electrolytes with the NASICON Structure. Russ J Electrochem 57, 953–961 (2021). https://doi.org/10.1134/S1023193521080073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521080073

Keywords:

Navigation