Skip to main content
Log in

Electroreduction of Derivatives of N,N'-Dioxides of Phenazine and Quinoxaline in Nonaqueous Media and in the Presence of Proton Donors of Medium Strength

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electroreduction (ER) of benzo[a]phenazine-7,12-dioxide (1) and 2-ethoxycarbonyl-3-methyl-quinoxaline-1,4-dioxide (2) in DMF on a glassy carbon electrode is studied by the methods of cyclic voltammetry, chronoamperometry, and electrolysis at controlled potential. In aprotic medium, these compounds are reduced to form relatively stable complexes as observed in both cyclic voltammetry curves and UV spectra. The deoxygenation of the derivatives of phenazine and quinoxaline N,N′-dioxides proceeds as a result of decomposition of the radical formed either at the ER of complexes of these compounds with СН3СООН or as a result of protonation of radical anions. For compound 2, the competition between the reactions of decomposition and ER of this radical is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Da Cunha, J., Lavaggi, M.L., Abasolo, M.I., Cerecetto, H., and Gonzalez M., 2D- and 3D-quantitative structure-activity relationship studies for a series of phenazine N,N'-dioxide as antitumour agents, Chem. Biol. Drug Des., 2011, vol. 78, p. 960.

    Article  CAS  Google Scholar 

  2. Pachon, O. G., Azqueta, A., Lavaggi, M.L., Lopez de Cerain, A., Creppy, E., Collins, A., Cerecetto H., Gonzalez, M., Centelles, J.J., and Cascante, M., Antitumoral effect of phenazine N5,N10-dioxide derivatives on caco-2 cells, Chem. Res. Toxicol., 2008, vol. 21, p. 1578.

    Article  CAS  Google Scholar 

  3. Gonda, M., Nieves, M., Nunes, E., Lopez de Cerain, A., Monge, A., Lavaggi, M. L., Gonzalez, M., and Cerecetto, H., Phenazine N,N0-dioxide scaffold as selective hypoxic cytotoxin pharmacophore. Structural modifications looking for further DNA topoisomerase II-inhibition activity, Med. Chem. Commun., 2013, no. 4, p. 595.

  4. Lavaggi, M.L., Cabrera, M., Pintos, C., Arredondo, C., Pachon, G., Rodrıguez, J., Raymondo, S., Pacheco, J.P., Cascante, M., Olea-Azar, C., Lopez de Cerain, A., Monge, A., Cerecetto, H., and Gonzalez, M., Novel phenazine 5,10-dioxides release •OH in simulated hypoxia and induce reduction of tumour volume in vivo, ISRN Pharmacol., 2011, Article ID 314209. https://doi.org/10.5402/2011/314209

  5. Chowdhury, G., Sarkar, U., Pullen, S., Wilson, W.R, Rajapakse, A., Fuchs-Knotts, T., and Gates, K.S., DNA strand cleavage by the phenazine di-N-oxide natural product myxin under both aerobic and anaerobic conditions, Chem. Res. Toxicol., 2012, vol. 25, p. 197. https://doi.org/10.1021/tx2004213

    Article  CAS  PubMed  Google Scholar 

  6. Fuchs, T., Chowdhury, G., Barnes, Ch.L., and Gates, K.S., 3-Amino-1,2,4-benzotriazine 4-oxide: characterization of a new metabolite arising from bioreductive processing of the antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine), J. Org. Chem., 2001, vol. 66, p. 107.

    Article  CAS  Google Scholar 

  7. Anderson, R.F., Shinde, S.S., Hay, M.P., Gamage, S.A., and Denny, W.A., Activation of 3-amino-1,2,4-benzotriazine 1,4-dioxide antitumor agents to oxidizing species following their one-electron reduction, J. Am. Chem. Soc., 2003, vol. 125, p. 748.

    Article  CAS  Google Scholar 

  8. Yin, J., Glaser, R., and Gates, K.S., On the reaction mechanism of tirapazamine reduction chemistry: Unimolecular N−OH homolysis, stepwise dehydration, or triazene ring-opening, Chem. Res. Toxicol., 2012, vol. 25, p. 634. https://doi.org/10.1021/tx200546u

    Article  CAS  PubMed  Google Scholar 

  9. Shen, X., Laber, Ch.H., Sarkar, U., Galazzi, F., Johnson, K.M., Mahieu, N.G., Hillebrand, R., Fuchs-Knotts, T., Barnes, Ch.L., Baker, G.A., and Gates, K.S., Exploiting the inherent photophysical properties of the major tirapazamine metabolite in the development of profluorescent substrates for enzymes that catalyze the bioreductive activation of hypoxia-selective anticancer prodrugs, J. Org. Chem., 2018, vol. 83, no. 6, p. 3126. https://doi.org/10.1021/acs.joc.7b03035

    Article  CAS  PubMed  Google Scholar 

  10. Cimmino, A., Evidente, A., Mathieu, V., Andolfi, A., Lefranc, F., Kornienko, A., and Kiss, R., Phenazines and cancer, Nat. Prod. Rep., 2012, vol. 29, p. 487. https://doi.org/10.1039/c2np00079b

    Article  CAS  PubMed  Google Scholar 

  11. Cerecetto, H., Gonzalez, M., Lavaggi, M.L., Azqueta, A., Lopez de Cerain, A., and Monge, A., Phenazine 5,10-dioxide derivatives as hypoxic selective cytotoxins, J. Med. Chem., 2005, vol. 48, p. 21.

    Article  CAS  Google Scholar 

  12. Hay, M.P., Gamage, S.A., Kovacs, M.S., Pruijn, F.B., Anderson, R.F., Patterson, A.V., Wilson, W.R., Brown, J.M., and Denny, W.A., Structure-activity relationships of 1,2,4-benzotriazine 1,4-dioxides as hypoxia-selective analogues of tirapazamine, J. Med. Chem., 2003, vol. 46, p. 169.

    Article  CAS  Google Scholar 

  13. Lavaggi, M.L., Nieves, M., Cabrera, M., Olea-Azar, C., Lopez de Cerain, A., Monge, A., Cerecetto, H., and Gonzalez, M., Structural modifications on the phenazine N,N′-dioxide-scaffold looking for new selective hypoxic cytotoxins, Eur. J. Med. Chem., 2010, vol. 45, p. 5362.

    Article  CAS  Google Scholar 

  14. Abu El-Haj, M. J., Dominy, B. W., Johnston, J.D., Haddadin, M.J., and Issidorides, C.H., A New route to phenazine 5,10-dioxides and related compounds, J. Org. Chem., 1978, vol. 7, no. 4, p. 589.

    Google Scholar 

  15. Lavaggi, M.L., Cabrera, M., Aravena, M. de los A., Olea-Azar, C., Lypez de Cerain, A., Monge, A., Pachyn, G., Cascante, M., Bruno, A.M., Pietra-santa, L.I., Gonzalez, M., and Cerecetto, H., Study of benzo[a]phenazine 7,12-dioxide as selective hypoxic cytotoxin-scaffold. Identification of aerobic-antitumoral activity through DNA fragmentation, Bioorg. Med. Chem., 2010, vol. 18, p. 4433.

    Article  CAS  Google Scholar 

  16. El-Gogary, S.R., Waly, M.A., Ibrahim, I.T., and El-Sepelgy, O.Z., Synthesis and UV absorption of new conjugated quinoxaline1,4-dioxide derivatives anticipated as tumor imaging and cytotoxic agents, Monatsh. Chem., 2010, vol. 141, p. 1253. https://doi.org/10.1007/s00706-010-0386-1

    Article  CAS  Google Scholar 

  17. Romeiro, N.C., Aguirre, G., Hernandez, P., Gonzalez, M., Cerecetto, H., Aldana, I., Perez-Silanes, S., Monge, A., Barreiro, E.J., and Lima, L.M., Synthesis, trypanocidal activity and docking studies of novel quinoxaline-N-acylhydrazones, designed as cruzain inhibitors candidates, Bioorg. Med. Chem. 2009, vol. 17, p. 641.

    Article  CAS  Google Scholar 

  18. Kulakovskaya, S.I., Krivenko, A.G., Komarova, N.S., Kulikov, A.V., and Shestakov, A.F., Electrochemical and ESR study of the mechanism of oxidation of phenazine-di-N-oxide in the presence of cyclohexanol on glassy carbon and single-walled carbon nanotube electrodes, Russ. J. Electrochem., 2014, vol. 50, p. 1.

    Article  CAS  Google Scholar 

  19. Miyazaki, H., Matsuhisa, Y., and Kubota, T., Cyclic voltammetry of aromatic amine N-oxides in nonaqueous solvents and the stability of the free radicals produced, Bull. Chem. Soc. Jpn., 1981, vol. 54, p. 3850.

    Article  CAS  Google Scholar 

  20. Ryzhakov, A.V., Alekseeva, S.A., and Rodina, L.L., New trends in the chemistry of molecular complexes of heteroaromatic N-oxides, Vestn. St.-Petersburg Univ., Ser. 4, 2009, no. 1, p. 67.

  21. Koldasheva, E.M., Shestakov, A.F., Geletii, Yu.V., and Shilov, A.E., Formation and redox properties of a complex of phenazine di-N-oxide with a proton, Bull. Russ. Acad. Sci. Chem., 1992, vol. 41, no. 4, p. 655.

    Article  Google Scholar 

  22. Koldasheva, E.M., Strelets, V.V., Tse, Y.K., Geletii, Yu.V., and Shestakov, A.F., Phenazine di-N-oxide radical cation and its reaction with hydrocarbons, Russ. Chem. Bull., 1996, vol. 45, no. 8, p. 1889.

    Article  Google Scholar 

  23. Tabner J. and Yandle J.R., A Correlation of half-wave reduction potentials with theoretical calculations for some nitrogen-containing heteromolecules in dimethylformamide, J. Chem. Soc. A, 1968, p. 381.

  24. Mendkovich, A.S., Syroeshkin, M.A., Mikhalchenko, L.V., Mikhailov, M.N., Rusakov, A.I., and Gul’tyai, V.P., Integrated study of the dinitrobenzene electroreduction mechanism by electroanalytical and computational methods, Int. J. Electrochem., vol. 2011, Article ID 346043. https://doi.org/10.4061/2011/346043

  25. Chowdhury, G., Kotandeniya, D., Daniels, J.S., Barnes, Ch.L., and Gates, K.S., Enzyme-activated, hypoxia-selective DNA damage by 3-amino-2-quinoxalinecarbonitrile 1,4-di-N-oxide, Chem. Res. Toxicol., 2004, vol.17, no. 11, p. 1399. https://doi.org/10.1021/tx049836w

    Article  CAS  PubMed  Google Scholar 

  26. Ganley, B., Chowdhury, G., Bhansali, J., Daniels, J.S., and Gates K.S., Redox-activated, hypoxia-selective DNA cleavage by quinoxaline 1,4-di-N-oxide, Bioorg. Med. Chem., 2001, vol. 9, p. 2395.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Mikhal’chenko.

Ethics declarations

The authors declare the absence of conflict of interests.

Additional information

Translated by T. Safonova

Published on the basis of materials of the XIX All-Russian Conference “Electrochemistry of Organic Compounds” (EKHOS-2018) (with international participation), Novocherkassk, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhal’chenko, L.V., Nasybullina, D.V., Leonova, M.Y. et al. Electroreduction of Derivatives of N,N'-Dioxides of Phenazine and Quinoxaline in Nonaqueous Media and in the Presence of Proton Donors of Medium Strength. Russ J Electrochem 56, 388–395 (2020). https://doi.org/10.1134/S1023193520040102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520040102

Keywords:

Navigation