Skip to main content
Log in

Redox Properties and Reactivity of Organic Trisulfides in Reactions with Alkenes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The redox reactions of organic trisulfides containing various hydrocarbon groups with alkenes in aprotic solvents were studied. The electrooxidation of trisulfides proceeds irreversibly by the ECE mechanism, with formation of sulfur-centered RS+ and RSS+ intermediates. The generated cations enter into electrophilic addition reactions with alkenes, forming asymmetric di- and monosulfides. The electrochemical reduction of trisulfides leads to the formation of a radical anion, which is fragmented into the RSS anion and RS radical. In the presence of acetic acid, the cathodic activation of trisulfides is accompanied by the formation of alkyl and phenyl hydrodisulfides (RSSH).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Vo, C.D., Kilcher, G., and Tirelli, N., Polymers and sulfur: What are organic polysulfides good for? Preparative strategies and biological applications, Macromol. Rapid Commun., 2009, vol. 30, p. 299. https://doi.org/10.1002/marc.200800740

    Article  CAS  PubMed  Google Scholar 

  2. Wu, D., Hu, Q., and Zhu, Y., Therapeutic application of hydrogen sulfide donors: The potential and challenges, Front. Med., 2016, vol. 10, p. 18. https://doi.org/10.1007/s11684-015-0427-6

    Article  PubMed  Google Scholar 

  3. Saidu, N.E.B., Valente, S., Bana, E., Kirsch, G., Bagrel, D., and Montenarh, M., Coumarin polysulfides inhibit cell growth and induce apoptosis in HCT116 colon cancer cells, Bioorg. Med. Chem., 2012, vol. 20, p. 1584. https://doi.org/10.1016/j.bmc.2011.12.032

    Article  CAS  PubMed  Google Scholar 

  4. Putnik, P., Gabrić, D., Roohinejad, S., Barba, F.J., Granato., D., Mallikarjunan, K., Lorenzo, J.M., and Kovačevića, D.B., An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties, Food Chem., 2019, vol. 276, p. 680. https://doi.org/10.1016/j.foodchem.2018.10.068

    Article  CAS  PubMed  Google Scholar 

  5. An, H., Zhu J., Wang, X., and Xu, X., Synthesis and anti-tumor evaluation of new trisulfide derivatives, Bioorg. Med. Chem. Lett., 2006, vol. 16, p. 4826. https://doi.org/10.1016/j.bmcl.2006.06.070

    Article  CAS  PubMed  Google Scholar 

  6. Fukao, T., Hosono, T., Misawa, S., Seki, T., and Ariga, T., The effects of allyl sulfides on the induction of phase II detoxification enzymes and liver injury by carbon tetrachloride, Food Chem. Toxicol., 2004, vol. 42, p. 743. https://doi.org/10.1016/j.fct.2003.12.010

    Article  CAS  PubMed  Google Scholar 

  7. Cerda, M.M., Zhao, Y., and Pluth, M.D., Thionoesters: A native chemical ligation-inspired approach to cysteine-triggered H2S donors, J. Am. Chem. Soc. 2018, vol. 140, p. 12574. https://doi.org/10.1021/jacs.8b07268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sochor, J., Dobes, J., Krystofova, O., Ruttkay-Nedecky, B., Babula, P., Pohanka, M., Jurikova, T., Zitka, O., Adam, V., Klejdus, B., and Kizek, R., Electrochemistry as a tool for studying antioxidant properties, Int. J. Electrochem. Sci., 2013, vol. 8, p. 8464

    CAS  Google Scholar 

  9. Nguyen, T.B., Recent advances in organic reactions involving elemental sulfur, Adv. Synth. Catal., 2017, vol. 359, p. 1066. https://doi.org/10.1002/adsc.201601329

    Article  CAS  Google Scholar 

  10. Yi, H., Zhang, G., Wang, H., Huang, Z., Wang, J., Singh, A.K., and Lei, A., Recent advances in radical C−H activation/radical cross-coupling, Chem. Rev., 2017, vol. 117, p. 9016. https://doi.org/10.1021/acs.chemrev.6b00620

    Article  CAS  PubMed  Google Scholar 

  11. Tang, S., Liu, Y., and Lei, A., Electrochemical oxidative cross-coupling with hydrogen evolution: A green and sustainable way for bond formation, Chem., 2018, vol. 4, p. 27. https://doi.org/10.1016/j.chempr.2017.10.001

    Article  CAS  Google Scholar 

  12. Tang, S., Zeng, L., and Lei, A., Oxidative R1-H/R2-H cross-coupling with hydrogen evolution, J. Am. Chem. Soc., 2018, vol. 140, p. 13128. https://doi.org/10.1021/jacs.8b07327

    Article  CAS  PubMed  Google Scholar 

  13. Jiang, Y., Xu, K., and Zeng, C., Use of electrochemistry in the synthesis of heterocyclic structures, Chem. Rev., 2018, vol. 118 (9), p. 4485. https://doi.org/10.1021/acs.chemrev.7b00271

    Article  CAS  PubMed  Google Scholar 

  14. Baker, L.A., A perspective and prospectus on single-entity electrochemistry, J. Am. Chem. Soc., 2018, vol. 140 (46), p. 15549. https://doi.org/10.1021/jacs.8b09747

    Article  CAS  PubMed  Google Scholar 

  15. Yuan, Y., Yu, Y., Qiao, J., Liu, P., Yu, B., Zhang, W., Liu, H., He, M., Huang, Z., and Lei, A., Exogenous-oxidant-free electrochemical oxidative C–H sulfonylation of arenes/heteroarenes with hydrogen evolution, Chem. Comm., 2018, vol. 54, p. 11471. https://doi.org/10.1039/c8cc06451b

    Article  CAS  PubMed  Google Scholar 

  16. Wang, Y., Deng, L., Mei, H., Du, B., Han, J., and Pan, Y., Electrochemical oxidative radical oxysulfuration of styrene derivatives with thiols and nucleophilic oxygen sources, Green Chem., 2018, vol. 20, p. 3444. https://doi.org/10.1039/C8GC01337C

    Article  CAS  Google Scholar 

  17. Lund, O. and Hammerich, O., Organic electrochemistry, Boca Raton: CRC Press, 2016, p. 1736.

    Google Scholar 

  18. Do, Q.T., Elothmani, D., Simonet, J., and Guillanton, G.L., The electrochemical oxidation of dimethyl disulfide – anodic methylsulfanylation of phenols and aromatic ethers, Electrochim. Acta, 2005, vol. 50, p. 4792. https://doi.org/10.1016/j.electacta.2005.02.033

    Article  CAS  Google Scholar 

  19. Manmode, S., Matsumoto, K., Nokami, T., and Itoh, T., Electrochemical methods as enabling tools for glycosylation, Asian J. Org. Chem., 2018, vol. 7, p. 1719. https://doi.org/10.1002/ajoc.201800302

    Article  CAS  Google Scholar 

  20. Manmode, S., Kato, M., Ichiyanagi, T., Nokami, T., and Itoh, T., Automated electrochemical assembly of the β-(1,3)-β-(1,6)-glucan hexasaccharide using thioglucoside building blocks, Asian J. Org. Chem., 2018, vol. 7, p. 1802. https://doi.org/10.1002/ajoc.201800345

    Article  CAS  Google Scholar 

  21. Mandal, B. and Basu, B., Recent advances in S–S bond formation, RSC Adv., 2014, vol. 4, p. 13854. https://doi.org/10.1039/c3ra45997g

    Article  CAS  Google Scholar 

  22. Glass, R.S., Jouikov, V.V., and Bojkova, N.V., Electrochemical activation of dimethyl disulfide for electrophilic aromatic substitution, J. Org. Chem. 2001, vol. 66, p. 4440. https://doi.org/10.1021/jo010156x

    Article  CAS  PubMed  Google Scholar 

  23. Matsumoto, K., Suga, S., and Yoshida, J., Organic reactions mediated by electrochemically generated ArS+, J. Org. Biomol. Chem., 2011, vol. 9, p. 2586. https://doi.org/10.1039/c0ob01070g

    Article  CAS  Google Scholar 

  24. Huang, P., Wang, P., Tang, S., Fu, Z., and Lei, A., Electro-oxidative cross S-H/S-H coupling with hydrogen evolution: A facile access to unsymmetrical disulfides, Angew. Chem. Int. Ed., 2018, vol. 57, p. 8115. https://doi.org/10.1002/anie.201803464

    Article  CAS  Google Scholar 

  25. Banerji, A. and Kalena, G.P., A new synthesis of organic trisulfides, Tetrahedron Lett., 1980, vol. 21, p. 3003. https://doi.org/10.1016/0040-4039(80)88021-X

    Article  CAS  Google Scholar 

  26. Derbesy, G. and Harpp., D.N., A simple method to prepare unsymmetrical di-, tri- and tetrasulfides, Tetrahedron Lett., 1994, vol. 35, no. 30, p. 5381. https://doi.org/10.1016/S0040-4039(00)73505-2

    Article  CAS  Google Scholar 

  27. Zysman-Colman, E. and Harpp, D.N., Optimization of the synthesis of symmetric aromatic tri- and tetrasulfides, J. Org. Chem., 2003, vol. 68, p. 2487. https://doi.org/10.1021/jo0265481

    Article  CAS  PubMed  Google Scholar 

  28. Soleiman-Beigi, M. and Mohammadi, F., Simple and green method for synthesis of symmetrical dialkyl disulfides and trisulfides from alkyl halides in water; PMOxT as a sulfur donor, J. Sulfur Chem., 2017, vol. 38, p. 134. https://doi.org/10.1080/17415993.2016.1253696

    Article  CAS  Google Scholar 

  29. Kertmen, A., Lach, S., Rachon, J., and Witt, D., Novel and efficient methods for the synthesis of symmetrical trisulfides, Synthesis, 2009, no. 9, p. 1459. https://doi.org/10.1055/s-0028-1088161

    Article  Google Scholar 

  30. Xu, S., Wang, Y., Radford, M.N., Ferrell, A.J., and Xian, M., Synthesis of unsymmetric trisulfides from 9‑fluorenylmethyl disulfides, Org. Lett., 2018, vol. 20, p. 465. https://doi.org/10.1021/acs.orglett.7b03846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guillanton, G.L., Electrochemical activation of sulfur in organic solvents—new syntheses of thioorganic compounds with a sacrificial carbon-sulfur electrode, Sulfur Rep., 1992, vol. 12 (2), p. 405. https://doi.org/10.1080/01961779208048949

    Article  Google Scholar 

  32. Berberova, N.T., Smolyaninov, I.V., Shinkar, E.V., Kuzmin, V.V., Sediki, D.B., and Shvetsova, A.V., Electrosynthesis of biologically active dicycloalkyl di- and trisulfides involving an H2S-S8 redox system, Russ. Chem. Bull., 2018, vol. 67, no. 1, p. 108. https://doi.org/10.1007/s11172-018-2044-4

    Article  CAS  Google Scholar 

  33. Shinkar, E.V., Shvetsova, A.V., Sediki, D.B., and Berberova, N.T., Redox activation of hydrogen sulfide in reaction with cycloheptane, Russ. J. Electrochem., 2015, vol. 51, no. 11, p. 1182. https://doi.org/10.1134/S1023193515110178

    Article  CAS  Google Scholar 

  34. Berberova, N.T., Shinkar, E.V., Smolyaninov, I.V., and Pashchenko, K.P., Redox mediators of hydrogen sulfide oxidation in reactions with cycloalkanes, Dokl. Chem., 2015, vol. 465, no. 6, p. 683. https://doi.org/10.1134/S0012500815120058

    Article  CAS  Google Scholar 

  35. Berberova, N.T., Smolyaninov, I.V., Shinkar, E.V., Burmistrova, D.A., Andzhigaeva, V.V., and Sultanova, M.U., Electrosynthesis of polysulfides R2Sn (n = 2–4) based on cycloalkanes and S8 via bromide-mediated oxidation of H2S, Int. J. Electrochem. Sci., 2019, vol. 14, p. 531. https://doi.org/10.20964/2019.01.15

    Article  CAS  Google Scholar 

  36. Vineyard, B.D., Mercaptan-sulfur reaction. Alkyl trisulfides, J. Org. Chem., 1966, vol. 31 (2), p. 601. https://doi.org/10.1021/jo01340a511

    Article  CAS  Google Scholar 

  37. Gordon, A.J. and Ford, R.A., The Chemist’s Companion, New York: Wiley, 1972.

    Google Scholar 

  38. Lam, K. and Geiger, W.E., Anodic oxidation of disulfides: Detection and reactions of disulfide radical cations, J. Org. Chem., 2013, vol. 78 (16), p. 8020. https://doi.org/10.1021/jo401263z

    Article  CAS  PubMed  Google Scholar 

  39. Guillanton, G.L., Determination of mixtures of polysulfides by cyclic voltammetry, J. Electrochem. Soc., 1996, vol. 143 (10), p. 223. https://doi.org/10.1149/1.1837151

    Article  Google Scholar 

  40. Berberova, N.T. and Shinkar, E.V., The radical cation of hydrogen sulfide and related organic reactions, Russ. Chem. Bull., 2000, vol. 49, p. 1178. https://doi.org/10.1007/BF02495758

    Article  CAS  Google Scholar 

  41. Bailey, T.S., Zakharov, L.N., and Pluth, M.D., Understanding hydrogen sulfide storage: probing conditions for sulfide release from hydrodisulfides, J. Am. Chem. Soc., 2014, vol. 136, p. 10573. https://doi.org/10.1021/ja505371z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (project no. 17-13-01168).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Burmistrova or I. V. Smolyaninov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by L. Smolina

Published on the basis of materials of the XIX All-Russian Conference “Electrochemistry of Organic Compounds” (EKHOS-2018) (with international participation), Novocherkassk, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burmistrova, D.A., Smolyaninov, I.V. & Berberova, N.T. Redox Properties and Reactivity of Organic Trisulfides in Reactions with Alkenes. Russ J Electrochem 56, 329–336 (2020). https://doi.org/10.1134/S1023193520040035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520040035

Keywords:

Navigation