Skip to main content
Log in

Therapeutic application of hydrogen sulfide donors: the potential and challenges

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Hydrogen sulfide (H2S), a colorless gas smelling of rotten egg, has long been considered a toxic gas and environment hazard. However, evidences show that H2S plays a great role in many physiological and pathological activities, and it exhibits different effects when applied at various doses. In this review, we summarize the chemistry and biomedical applications of H2S-releasing compounds, including inorganic salts, phosphorodithioate derivatives, derivatives of Allium sativum extracts, derivatives of thioaminoacids, and derivatives of antiinflammatory drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szabó C. Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 2007; 6(11): 917–935

    Article  PubMed  Google Scholar 

  2. Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 2002; 16(13): 1792–1798

  3. Kamoun P. Endogenous production of hydrogen sulfide in mammals. Amino Acids 2004; 26(3): 243–254

  4. Asimakopoulou A, Panopoulos P, Chasapis CT, Coletta C, Zhou Z, Cirino G, Giannis A, Szabo C, Spyroulias GA, Papapetropoulos A. Selectivity of commonly used pharmacological inhibitors for cystathionine ß synthase (CBS) and cystathionine g lyase (CSE). Br J Pharmacol, 2013; 169(4): 922–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine ?- lyase. Science, 2008; 322(5901): 587–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev, 2012; 92(2): 791–796

    Article  CAS  PubMed  Google Scholar 

  7. Whiteman M, Le Trionnaire S, Chopra M, Fox B, Whatmore J. Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin Sci (Lond), 2011; 121(11): 459–488

    Article  CAS  Google Scholar 

  8. Sun Q, Collins R, Huang S, Holmberg-Schiavone L, Anand GS, Tan CH, van-den-Berg S, Deng LW, Moore PK, Karlberg T, Sivaraman J. Structural basis for the inhibition mechanism of human cystathionine lyase, an enzyme responsible for the production of H(2)S. J Biol Chem, 2009; 284(5): 3076–3085

    Article  CAS  PubMed  Google Scholar 

  9. Asimakopoulou A, Panopoulos P, Chasapis CT, Coletta C, Zhou Z, Cirino G, Giannis A, Szabo C, Spyroulias GA, Papapetropoulos A. Selectivity of commonly used pharmacological inhibitors for cystathionine ß synthase (CBS) and cystathionine g lyase (CSE). Br J Pharmacol, 2013; 169(4): 922–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J, 2001; 20(21): 6008–6016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kashfi K, Olson KR. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem Pharmacol, 2013; 85(5): 689–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takeuchi H, Setoguchi T, Machigashira M, Kanbara K, Izumi Y. Hydrogen sulfide inhibits cell proliferation and induces cell cycle arrest via an elevated p21 Cip1 level in Ca9-22 cells. J Periodontal Res, 2008; 43(1): 90–95

    Article  CAS  PubMed  Google Scholar 

  13. Yan H, Du J, Tang C. The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochem Biophys Res Commun, 2004; 313(1): 22–27

    Article  CAS  PubMed  Google Scholar 

  14. Ariyaratnam P, Loubani M, Morice AH. Hydrogen sulphide vasodilates human pulmonary arteries: a possible role in pulmonary hypertension? Microvasc Res 2013; 90: 135–137

  15. Holwerda KM, Burke SD, Faas MM, Zsengeller Z, Stillman IE, Kang PM, van Goor H, McCurley A, Jaffe IZ, Karumanchi SA, Lely AT. Hydrogen sulfide attenuates sFlt1-induced hypertension and renal damage by upregulating vascular endothelial growth factor. J Am Soc Nephrol, 2014; 25(4): 717–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW. Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci USA, 2007; 104(46): 17977–17982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rodriguez J, Maloney RE, Rassaf T, Bryan NS, Feelisch M. Chemical nature of nitric oxide storage forms in rat vascular tissue. Proc Natl Acad Sci USA, 2003; 100(1): 336–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kondo K, Bhushan S, King AL, Prabhu SD, Hamid T, Koenig S, Murohara T, Predmore BL, Gojon G Sr, Gojon G, Wang R, Karusula N, Nicholson CK, Calvert JW, Lefer DJ. H2S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation, 2013; 127(10): 1116–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Klocke R, Tian W, Kuhlmann MT, Nikol S. Surgical animal models of heart failure related to coronary heart disease. Cardiovasc Res, 2007; 74(1): 29–38

    Article  CAS  PubMed  Google Scholar 

  20. Zunnunov ZR. Efficacy and safety of hydrogen sulfide balneotherapy in ischemic heart disease the arid zone. Ter Arkh, 2004; 76(8): 15–18 (in Russian)

    CAS  PubMed  Google Scholar 

  21. Liu Z, Han Y, Li L, Lu H, Meng G, Li X, Shirhan M, Peh MT, Xie L, Zhou S, Wang X, Chen Q, Dai W, Tan CH, Pan S, Moore PK, Ji Y. The hydrogen sulfide donor, GYY4137, exhibits anti-atherosclerotic activity in high fat fed apolipoprotein E(-/-) mice. Br J Pharmacol, 2013; 169(8): 1795–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang Y, Li F, Tong W, Zhang A, He Y, Fu T, Liu B. Hydrogen sulfide, a gaseous transmitter, stimulates proliferation of interstitial cells of Cajal via phosphorylation of AKT protein kinase. Tohoku J Exp Med, 2010; 221(2): 125–132

    Article  CAS  PubMed  Google Scholar 

  23. Toombs CF, Insko MA, Wintner EA, Deckwerth TL, Usansky H, Jamil K, Goldstein B, Cooreman M, Szabo C. Detection of exhaled hydrogen sulphide gas in healthy human volunteers during intravenous administration of sodium sulphide. Br J Clin Pharmacol, 2010; 69(6): 626–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee ZW, Zhou J, Chen CS, Zhao Y, Tan CH, Li L, Moore PK, Deng LW. The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo. PLoS ONE, 2011; 6(6): e21077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH, Moore PK. Characterization of a novel, watersoluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation, 2008; 117(18): 2351–2360

    Article  CAS  PubMed  Google Scholar 

  26. Li L, Salto-Tellez M, Tan CH, Whiteman M, Moore PK. GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic Biol Med, 2009; 47(1): 103–113

    Article  CAS  PubMed  Google Scholar 

  27. Lee ZW, Teo XY, Tay EYW, Tan CH, Hagen T, Moore PK, Deng LW. Utilizing hydrogen sulfide as a novel anti-cancer agent by targeting cancer glycolysis and pH imbalance. Br J Pharmacol, 2014; 171(18): 4322–4336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang FY, Chiang EP, Pai MH. Consumption of S-allylcysteine inhibits the growth of human non-small-cell lung carcinoma in a mouse xenograft model. J Agric Food Chem, 2010; 58(20): 11156–11164

    Article  CAS  PubMed  Google Scholar 

  29. Ried K, Frank OR, Stocks NP. Aged garlic extract lowers blood pressure in patients with treated but uncontrolled hypertension: a randomised controlled trial. Maturitas, 2010; 67(2): 144–150

    Article  PubMed  Google Scholar 

  30. Chuah SC, Moore PK, Zhu YZ. S-allylcysteine mediates cardioprotection in an acute myocardial infarction rat model via a hydrogen sulfide-mediated pathway. Am J Physiol Heart Circ Physiol, 2007; 293(5): H2693–H2701

    Article  CAS  PubMed  Google Scholar 

  31. Wang Q, Wang XL, Liu HR, Rose P, Zhu YZ. Protective effects of cysteine analogues on acute myocardial ischemia: novel modulators of endogenous H2S production. Antioxid Redox Signal, 2010; 12 (10):1155–1165.

    Article  CAS  PubMed  Google Scholar 

  32. Kan J, Guo W, Huang C, Bao G, Zhu Y, Zhu YZ. S-propargylcysteine, a novel water-soluble modulator of endogenous hydrogen sulfide, promotes angiogenesis through activation of signal transducer and activator of transcription 3. Antioxid Redox Signal, 2014; 20(15): 2303–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pan LL, Liu XH, Gong QH, Zhu YZ. S-Propargyl-cysteine (SPRC) attenuated lipopolysaccharide-induced inflammatory response in H9c2 cells involved in a hydrogen sulfide-dependent mechanism. Amino Acids, 2011; 41(1): 205–215

    Article  CAS  PubMed  Google Scholar 

  34. Gong QH, Wang Q, Pan LL, Liu XH, Xin H, Zhu YZ. S-propargylcysteine, a novel hydrogen sulfide-modulated agent, attenuates lipopolysaccharide-induced spatial learning and memory impairment: involvement of TNF signaling and NF-kB pathway in rats. Brain Behav Immun, 2011; 25(1): 110–119

    Article  CAS  PubMed  Google Scholar 

  35. Ma K, Liu Y, Zhu Q, Liu CH, Duan JL, Tan BK, Zhu YZ. H2S donor, S-propargyl-cysteine, increases CSE in SGC-7901 and cancer-induced mice: evidence for a novel anti-cancer effect of endogenous H2S PLoS ONE 2011; 6(6): e20525

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu C, Gu X, Zhu YZ. Synthesis and biological evaluation of novel leonurine-SPRC conjugate as cardioprotective agents. Bioorg Med Chem Lett, 2010; 20(23): 6942–6946

    Article  PubMed  Google Scholar 

  37. Amagase H. Clarifying the real bioactive constituents of garlic. J Nutr, 2006; 136(3 Suppl): 716S–725S

    CAS  PubMed  Google Scholar 

  38. Yun HM, Ban JO, Park KR, Lee CK, Jeong HS, Han SB, Hong JT. Potential therapeutic effects of functionally active compounds isolated from garlic. Pharmacol Ther, 2014; 142(2): 183–195

    Article  CAS  PubMed  Google Scholar 

  39. Kalra N, Arora A, Shukla Y. Involvement of multiple signaling pathways in diallyl sulfide mediated apoptosis in mouse skin tumors. Asian Pac J Cancer Prev, 2006; 7(4): 556–562

    PubMed  Google Scholar 

  40. Wu PP, Liu KC, Huang WW, Chueh FS, Ko YC, Chiu TH, Lin JP, Kuo JH, Yang JS, Chung JG. Diallyl trisulfide (DATS) inhibits mouse colon tumor in mouse CT-26 cells allograft model in vivo. Phytomedicine, 2011; 18(8-9): 672–676

    Article  CAS  PubMed  Google Scholar 

  41. Filomeni G, Aquilano K, Rotilio G, Ciriolo MR. Reactive oxygen species-dependent c-Jun NH2-terminal kinase/c-Jun signaling cascade mediates neuroblastoma cell death induced by diallyl disulfide. Cancer Res, 2003; 63(18): 5940–5949

    CAS  PubMed  Google Scholar 

  42. Zhou Z, von Wantoch Rekowski M, Coletta C, Szabo C, Bucci M, Cirino G, Topouzis S, Papapetropoulos A, Giannis A. Thioglycine and L-thiovaline: biologically active H2S-donors. Bioorg Med Chem, 2012; 20(8): 2675–2678

    Article  CAS  PubMed  Google Scholar 

  43. Wallace JL, Caliendo G, Santagada V, Cirino G, Fiorucci S. Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology, 2007; 132(1): 261–271

    Article  CAS  PubMed  Google Scholar 

  44. Thun MJ, Henley SJ, Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst, 2002; 94(4): 252–266

    Article  CAS  PubMed  Google Scholar 

  45. Chattopadhyay M, Kodela R, Nath N, Dastagirzada YM, Velázquez- Martínez CA, Boring D, Kashfi K. Hydrogen sulfide-releasing NSAIDs inhibit the growth of human cancer cells: a general property and evidence of a tissue type-independent effect. Biochem Pharmacol, 2012; 83(6): 715–722

    Article  CAS  PubMed  Google Scholar 

  46. Hanif R, Pittas A, Feng Y, Koutsos MI, Qiao L, Staiano-Coico L, Shiff SI, Rigas B. Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem Pharmacol, 1996; 52(2): 237–245

    Article  CAS  PubMed  Google Scholar 

  47. Kodela R, Chattopadhyay M, Kashfi K. NOSH-aspirin: a novel nitric oxide-hydrogen sulfide-releasing hybrid: a new class of antiinflammatory pharmaceuticals. ACS Med Chem Lett, 2012; 3(3): 257–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao Y, Wang H, Xian M. Cysteine-activated hydrogen sulfide (H2S) donors. JACS, 2011;133 (1) 15–17

    Article  CAS  Google Scholar 

  49. Zhao Y, Bhushan S, Yang C, Otsuka H, Stein JD, Pacheco A, Peng B, Devarie-Baez NO, Aguilar HC, Lefer DJ, Xian M. Controllable hydrogen sulfide donors and their activity against myocardial ischemia-reperfusion injury. ACS Chem Biol, 2013; 8(6): 1283–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen WS, Zang QG, Wang LQ, Tang FY, Han YJ, Yang CJ, Deng L, Liu YN. NIR light controlled release of caged hydrogen sulfide based on upconversion nanoparticles. Chem Commun, 2015; 51:9193–9196

    Article  CAS  Google Scholar 

  51. Eghbal MA, Pennefather PS, O’Brien PJ. H2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation. Toxicology, 2004; 203(1-3): 69–76

    Article  CAS  PubMed  Google Scholar 

  52. Huang C, Kan J, Liu X, Ma F, Tran BH, Zou Y, Wang S, Zhu YZ. Cardioprotective effects of a novel hydrogen sulfide agentcontrolled release formulation of S-propargyl-cysteine on heart failure rats and molecular mechanisms. PLoS ONE, 2013; 8(7): e69205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Han Y, Qin J, Chang X, Yang Z, Du J. Hydrogen sulfide and carbon monoxide are in synergy with each other in the pathogenesis of recurrent febrile seizures. Cell Mol Neurobiol, 2006; 26(1): 101–107

    Article  PubMed  Google Scholar 

  54. Wang YF, Shi LN, Du JB, Tang CS. Impact of L-arginine on hydrogen sulfide/cystathionine-?-lyase pathway in rats with high blood flow-induced pulmonary hypertension. Biochem Biophys Res Commun, 2006; 345(2): 851–857

    Article  CAS  Google Scholar 

  55. Whiteman M, Li L, Kostetski I, Chu SH, Siau JL, Bhatia M, Moore PK. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun, 2006; 343(1): 303–310

    Article  CAS  PubMed  Google Scholar 

  56. Ryter SW, Alam J, Choi AMK. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev, 2006; 86(2): 583–650

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhun Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Hu, Q. & Zhu, Y. Therapeutic application of hydrogen sulfide donors: the potential and challenges. Front. Med. 10, 18–27 (2016). https://doi.org/10.1007/s11684-015-0427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-015-0427-6

Keywords

Navigation