Skip to main content
Log in

Facile Fabrication of Graphene/Mn3O4/Cu(OH)2 on Cu Foil as an Electrode for Supercapacitor Applications

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

To improve the specific capacitance of graphene based supercapacitor, new ternary graphene/Mn3O4/Cu(OH)2 composite was synthesized by two-step method. First, graphene/Mn3O4 composites with different weight ratio (G : Mn = 1 : 1, G : Mn = 1 : 4, G : Mn = 1 : 7 and G : Mn = 1 : 10) were synthesized by mixing and annealing method. Second, Cu(OH)2 rods were deposited on Cu foil. Afterwards, graphene/Mn3O4 composite powders were deposited on Cu(OH)2/Cu copper current collector as working electrodes. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. The XRD analysis revealed the presence of graphene/Mn3O4. The presence of Mn3O4 was also confirmed by Fourier transform infrared spectroscopy and Raman spectroscopy. Graphene/Mn3O4/Cu(OH)2 composite electrode with the weight ratio of G : Mn = 1 : 7 showed the best electrochemical performance and exhibited the largest specific capacitance of approximately 266 F g2−1 at the scan rate of 10 mV/s in 6 M KOH electrolyte. In addition, other electrochemical measurements (charge-discharge and EIS) of the G/Cu(OH)2/Cu, and G/Mn3O4/Cu(OH)2/Cu electrodes suggested that the G/Mn3O4/Cu(OH)2/Cu electrode is promising materials for supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z., Wang, C.Y., Ma, H.L., Liu, Z.H. and Hao, Z.P., Facilely synthesized Fe2O3-graphene nano-composite as novel electrode materials for supercapacitors with high performance, J. Alloys Compd., 2013, vol. 552, p. 486.

    Article  CAS  Google Scholar 

  2. Xiang, C., Li, M., Zhi, M., Manivannan, A., and Wu, N.Q., Reduced graphene oxide/titanium dioxide composite for supercapacitor electrodes: shape and coupling effects, J. Mater. Chem., 2012, vol. 22, p. 19161.

    Article  CAS  Google Scholar 

  3. Conway, B.E., Electrochemical Supercapacitors, NewYork: Plenum Press, 1999.

    Book  Google Scholar 

  4. Burke, A., Ultracapacitors: why, how, and where is the technology, J. Power Sources, 2000, vol. 91, p. 37.

    Article  CAS  Google Scholar 

  5. Zheng, J.P., Cygan, P.J., and Jow, T.R., Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc., 1995, vol. 142, p. 2699.

    Article  CAS  Google Scholar 

  6. Huang, C.-C., Hu, Y.-H., and Chang, K.-H., Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical supercapacitors, J. Power Sources, 2002, vol. 108, p. 117.

    Article  Google Scholar 

  7. Zhu, G., Li, H.J., Deng, L.J., and Liu, Z.H., Low-temperature synthesis of 5-MnO2 with large surface area and its capacitance, Mater. Lett., 2010, vol. 64, p. 1763.

    Article  CAS  Google Scholar 

  8. Dubal, D.P., Dhawale, D.S., Salunkhe, R.R., Fulari, V.J., and Lokhande, C.D., Chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application, J. Alloys Compd., 2010, vol. 497, p. 166.

    Article  CAS  Google Scholar 

  9. Liu, T.-C., Pell, W.G., and Conway, B.E., Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance, Electrochim. Acta, 1999, vol. 44, p. 2829.

    Article  CAS  Google Scholar 

  10. Yuan, C., Zhang, X., Su, L., Gao, B., and Shen, L., Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors, Mater. Chem. A, 2009, vol. 19, p. 5772.

    Article  CAS  Google Scholar 

  11. Lang, X., Hirata, A., Fujita, T., and Chen, M., Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nature Nanotechnol., 2011, vol. 6, p. 232.

    Article  CAS  Google Scholar 

  12. Zhang, S.W. and Chen, G.Z., Manganese oxide based materials for supercapacitors, Energy Mater., 2008, vol. 3, p. 186.

    Article  CAS  Google Scholar 

  13. Takahashi, K., Dry cell and battery industry and powder technology with emphasis on powdered manganese dioxide, Electrochim. Acta, 1981, vol. 26, p. 1467.

    Article  CAS  Google Scholar 

  14. Chang, K.H., Lee, Y.F., Hu, C.C., Chang, C.I., Liu, C.L., and Yang, Y., A unique strategy for preparing single-phase unitary/binary oxides-graphene composites, Chem. Commun., 2010, vol. 46, p. 7957.

    Article  CAS  Google Scholar 

  15. Liu, Y., He, D., Wu, H., and Duan, J., Graphene and nanostructured Mn3O4 composites for supercapacitors, Integr. Ferroelectr, 2013, vol. 144, p. 118.

    Article  CAS  Google Scholar 

  16. Wu, Y., Liu, S., Wang, H., Wang, X., Zhang, X., and Jin, G., A novel solvothermal synthesis of Mn3O4/graphene composites for supercapacitors, Electrochim. Acta, 2013, vol. 90, p. 210.

    Article  CAS  Google Scholar 

  17. Zhang, X., Sun, X., Chen, Y., and Zhang, D., One-step solvothermal synthesis of graphene/Mn3O4 nanocomposites and their electrochemical properties for super-capacitors, Mater. Lett, 2012, vol. 68, p. 336.

    Article  CAS  Google Scholar 

  18. Lee, J.W., Hall, A.S., Kim, J.-D., and Mallouk, T.E., A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability, Chem. Mater., 2012, vol. 24, p. 115.

    Article  CAS  Google Scholar 

  19. Blomquist, N., Wells, T., Andres, B., Backstrom, J., Forsberg, S., and Olin, H., Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials, Sci. Rep., 2017, vol. 7, p. 39836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gheytani, S., Liang, Y., Jing, Y., Xu, J.Q., and Yao, Y., Chromate conversion coated aluminium as a lightweight and corrosion-resistant current collector for aqueous lithium-ion batteries, Mater. Chem. A, 2016, vol. 4, p. 395.

    Article  CAS  Google Scholar 

  21. Wang, X., Chen, Ch., Chen, K., Chen, H., and Shao Jun Yuan, MnO2 nanosheets-decorated CuO nanoneedles arrays@Cu foils for supercapacitors, Int. J. Electrochem. Sci., 2016, vol. 11, p. 3425.

    Article  CAS  Google Scholar 

  22. Bose, S., Kim, N.H., Kuila, T., Lau, K., and Lee, J.H., Electrochemical performance of a graphene-polypyr-role nanocomposite as a supercapacitor electrode, Nano-technology, 2011, vol. 22, p. 369502.

    Google Scholar 

  23. Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., and Lee, J.H., Recent advances in graphene based polymer composites, Prog. Polym. Sci., 2010, vol. 35, p. 1350.

    Article  CAS  Google Scholar 

  24. Rosaiah, P., Jinghui, Z., Dadamiah P.M.D. Shaik Hussain, O.M., Qiu, Y., and Zhao, L., Reduced graphene oxide/Mn3O4 nanocomposite electrodes with enhanced electrochemical performance for energy storage applications, J. Electroanal. Chem., 2017, vol. 794, pp. 78–85.

    Article  CAS  Google Scholar 

  25. Liao, Q.Y., Li, S.Y., Cui, H., and Wang, C.H., Vertically-aligned graphene@Mn3O4 nanosheets for a highperformance flexible all-solid-state symmetric super-capacitor, J. Mater. Chem. A, 2016, vol. 4, p. 8830.

    Article  CAS  Google Scholar 

  26. Zhou, T., Mo, Sh., Zhou, Sh., Zou, W., Liu, Y., and Yuan, D., Mn3O4/worm-like mesoporous carbon synthesized via a microwave method for supercapacitors, J. Mater. Sci., 2011, vol. 46, p. 3337.

    Article  CAS  Google Scholar 

  27. Panpan Xu, Ke Ye, Mengmeng Du, Jijun Liu, Kui Cheng, Jinling Yin, Guiling Wang, and Dianxue Cao, One-step synthesis of copper compounds on copper foil and their supercapacitive performance, RSC Adv., 2015, vol. 5, p. 36656.

    Article  CAS  Google Scholar 

  28. Yang, Y., Zeng, B., Liu, J., Long, Y., Li, N., Wen, Z., and Jiang, Y., Graphene/MnO2 composite prepared by a simple method for high performance supercapacitor, Mater. Res. Innov, 2016, vol. 20, no. 2.

  29. Sathyamoorthy, R. and Mageshwari, K., Synthesis of hierarchical CuO microspheres: photocatalytic and antibacterial activities, Phys. E, 2013, vol. 47, p. 157.

    Article  CAS  Google Scholar 

  30. Momeni, M.M., Nazari, Z., Kazempour, A., Hakimiyan, M., and Mirhoseini, S.M., Preparation of CuO nanostructures coating on copper as supercapacitor materials, Surf. Eng., 2014, vol. 30, p. 775.

    Article  CAS  Google Scholar 

  31. Pramanik, A., Maiti, S., and Mahanty, S., Reduced graphene oxide anchored Cu(OH)2 as a high performance electrochemical supercapacitor, Dalton Trans., 2015, vol. 44, p. 14604.

    Article  CAS  PubMed  Google Scholar 

  32. Chen, J., Xu, J., Zhou, Sh., Zhao, N., and Wong, C.P., J. Mater. Chem. A, 2015, vol. 3, p. 17385.

    Article  CAS  Google Scholar 

  33. Yuan, R.M., Li, H.J., Yin, X.M., Lu, J.H., and Zhang, L., 3D CuO nanosheet wrapped nanofilm grown on Cu foil for high performance non-enzymatic glucose biosensor electrode, Talanta, 2017, vol. 174, p. 514.

    Article  CAS  PubMed  Google Scholar 

  34. Hsu, Y.K., Chen, Y.C., and Lin, Y.G., Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes, J. Electroanal. Chem., 2012, vol. 673, p. 43.

    Article  CAS  Google Scholar 

  35. Zhang, F., Zhang, X.G., and Hao, L., Solution synthesis and electrochemical capacitance performance of Mn3O4 polyhedral nanocrystals via thermolysis of a hydrogen-bonded polymer, J. Mater. Chem. Phys., 2011, vol. 126, p. 853.

    Article  CAS  Google Scholar 

  36. Lim, C.H., Ng, H.N., Lim, Y.S., Chee, W.K., and Huang, N.M., Fabrication of flexible polypyr-role/graphene oxide/manganese oxide supercapacitor, Int. J. Energy Res., 2015, vol. 39, no. 3, pp. 344–355.

    Article  CAS  Google Scholar 

  37. Wang, Y., Re, J., Huang, X., and Ding, J., The synthesis of polypyrrole@Mn3O4/reduced graphene oxide anode with improved coulombic efficiency, J. Electrochim. Acta, 2015, vol. 186, p. 345.

    Article  CAS  Google Scholar 

  38. Sun, W., Chen, L., Wang, Y., Zhou, Y., Meng, Sh., Li, H., and Luo, Y., Synthesis of highly conductive PPy/Graphene/MnO2 composite using ultrasonic irradiation, J. Synth. React. Inorg. Metal Organic Nano-Metal Chem., 2016, vol. 46, p. 437.

    Article  CAS  Google Scholar 

  39. Fathi, M., Saghafi, M., Mahboubi, F., and Mohajerzadeh, S., Synthesis and electrochemical investigation of polyaniline/unzipped carbon nanotube composites as electrode material in supercapacitors, Synth. Met., 2014, vol. 198, p. 345.

    Article  CAS  Google Scholar 

  40. Ng, C.H., Lim, H.N., Lim, Y.S., Chee, W.K., and Huang, N.M., Fabrication of flexible polypyr-role/graphene oxide/manganese oxide supercapacitor, Int. J. Energy Res, 2015, vol. 39, p. 344.

    Article  CAS  Google Scholar 

  41. Zhu, L., Zhang, S., Cui, Y., Song, H., and Chen, X., One step synthesis and capacitive performance of graphene nanosheets/Mn3O4 composite, Electrochim. Acta, 2013, vol. 89, p. 18.

    Article  CAS  Google Scholar 

  42. Gund, G.S., Dubal, D.P., Patil, B.H., Shindea, S.S., and Lokhandea, C.D., Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors, Electrochim. Acta, 2013, vol. 92, p. 205.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sedghi.

Additional information

Published in Russian in Elektrokhimiya, 2019, Vol. 55, No. 5, pp. 599–608.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miankushki, H.N., Sedghi, A. & Baghshahi, S. Facile Fabrication of Graphene/Mn3O4/Cu(OH)2 on Cu Foil as an Electrode for Supercapacitor Applications. Russ J Electrochem 55, 429–437 (2019). https://doi.org/10.1134/S1023193519050094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519050094

Keywords

Navigation