Skip to main content
Log in

Electric Conductivity of α-Al2O3 Suspensions in Carbonate and Carbonate-Chloride Melts

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The temperature dependence of the specific electric conductivity of suspensions based on carbonate and carbonate-chloride melts immobilized with α-Al2O3 powder was studied. For carbonate-chloride melts immobilized with α-Al2O3, the decrease in the specific electric conductivity considerably exceeded the effect associated with a decrease in the volume fraction of charge carriers. The Raman spectroscopy and Xray diffraction analysis showed that there was no chemical interaction of α-Al2O3 with the carbonate and carbonate-chloride melt that could lead to the formation of additional nonconducting phases in these systems in the temperature range under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakin, K.B., Simakova, O.N., Polyakov, P.V., Mikhalev, Yu.G., Simakov, D.A., and Gusev, A.O., Elektroprovodnost’ elektrolitov-suspenzii sistemy NaFAlF 3CaF 2Al 2 O 3 (Electric Cconductivity of Electrolyte Suspensions of the NaF–AlF3–CaF2–Al2O3 System), Zh. SFU. Tekhn. Tekhnol., 2011, vol. 2, p. 162.

    Google Scholar 

  2. Remick, R., and Wheeler, D., Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis, Colorado: National Renewable Energy Laboratory, 2010.

    Google Scholar 

  3. Kulkarni, A. and Giddey, S., Materials issues and recent developments in molten carbonate fuel cells, J. Solid State Electrochem., 2012, vol. 16, p. 3123.

    Article  CAS  Google Scholar 

  4. Beleke, A., Mizuhata, M., and Deki, S., Diffuse reflectance FT-IR spectroscopic study of interactions of α-Al2O3/molten NaNO3 coexistence systems, Phys. Chem. Chem. Phys., 2003, vol. 5, p. 2089.

    Article  CAS  Google Scholar 

  5. Burmakin, E.I., Rodigina, E.N., and Esina, N.O., Electric resistance of molten carbonate electrolytes immobilized with lithium aluminosilicates, in Elektrokhimiya rasplavlennykh solevykh i tverdykh elektrolitov (Electrochemistry of Molten Salt and Solid Electrolytes), 1974, p. 81.

    Google Scholar 

  6. Scaccia, S., Investigation on NiO solubility in binary and ternary molten alkali metal carbonates containing additives, J. Mol. Liq., 2005, vol. 116, p. 67.

    Article  CAS  Google Scholar 

  7. Näfe, H., Conductivity of alkali carbonates, carbonatebased composite electrolytes and IT-SOFC, ECS J. Solid State Sci. Technol., 2014, vol. 3, p. 7.

    Article  CAS  Google Scholar 

  8. Mizuhata, M., Ohashi, T., and Béléké, A., Electrical conductivity and related properties of molten carbonates coexisting with ceria-based oxide powder for hybrid electrolyte, Int. J. Hydrogen Energy, 2012, vol. 37, p. 19407.

    Article  CAS  Google Scholar 

  9. Mizuhata, M., Harada, Y., Cha, G., Béléké, A., and Deki, S., Physicochemical properties of molten alkali metal carbonates coexisting with inorganic powder, J. Electrochem. Soc., 2004, vol. 151, p. 179.

    Article  CAS  Google Scholar 

  10. Dukhin, S.S., Elektroprovodnost’ i elektrokineticheskie svoistva dispersnykh sistem (Electroconductivity and Electrokinetic Properties of Disperse Systems), Kiev: Naukova Dumka, 1975.

    Google Scholar 

  11. Pletcher, D., Instrumental Methods in Electrochemistry, Pletcher, D., Greef, R., and Peat, R., Eds., Westergate: Horwood, 2001, p. 445.

  12. Posypaiko, V.I., Alekseeva, E.A., and Vasina, N.A., Diagrammy plavkosti solevykh sistem. Ch. 3. Dvoinye sistemy s obshchim kationom (Fusion Diagrams of Salt Systems, Part 3. Binary Systems with a Common Cation), Moskow: Metallurgia, 1979.

    Google Scholar 

  13. Janz, G.J., Molten salts data as reference standards for density, surface tension and electrical conductance: KNO3 and NaCl, J. Chem. Eng. Data, 1961, vol. 6, p. 321.

    Article  CAS  Google Scholar 

  14. Janz, G.J., and Lorenz, M.R., Thermodynamic and transport properties for molten salt: correlation equations for critically evaluated density, surface tension, electrical conductance and viscosity data, J. Phys. Chem. Ref. Data, 1988, vol. 17, p. 213.

    Google Scholar 

  15. Zakir’yanova, I.D., Arkhipov, P.A., and Zakir’yanov, D.O., Reaction mechanism of lead(II) oxide with a PbCl2–CsCl melt according to Raman spectroscopic data, J. Appl. Spectrosc., 2016, vol. 82, p. 920.

    Article  CAS  Google Scholar 

  16. Markov, B.F., Termodinamika kompleksnykh soedinenii v rasplavakh solevykh sistem (Thermodynamics of Complex Compounds in Molten Salt Systems), Kiev: Naukova Dumka, 1988.

    Google Scholar 

  17. Shackelford, J.F., and Doremus, R.H., Ceramic and Glass Materials. Structure, Properties and Processing, New York: Springer, 2008.

    Google Scholar 

  18. Gertsberg, G., Kolebatel’nye i vrashchatel’nye spektry mnogoatomnykh molekul (Vibrational and Rotational Spectra of Polyatomic Molecules), Moscow: Inostrannaya Literatura, 1949.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Nikolaeva.

Additional information

Original Russian Text © E.V. Nikolaeva, I.D. Zakir’yanova, A.L. Bove, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 9, pp. 794–800.

Published on the basis of materials of the First International Conference on Intelligent Technologies in Power Engineering, Yekaterinburg, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaeva, E.V., Zakir’yanova, I.D. & Bove, A.L. Electric Conductivity of α-Al2O3 Suspensions in Carbonate and Carbonate-Chloride Melts. Russ J Electrochem 54, 690–696 (2018). https://doi.org/10.1134/S1023193518090094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518090094

Keywords

Navigation