Skip to main content
Log in

Electrophysical and thermomechanical properties of perovskites La0.5A0.5Mn0.5Ti0.5O3–δ (A = Ca, Sr, Ba) used as fuel cell anodes: the effect of radius of alkali-earth cation

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of the radius of the alkali-earth cation substituted into the A sublattice of La0.5A0.5Mn0.5Ti0.5O3–δ (А = Са, Sr, Ba) perovskites on their stability and transport and thermomechanical properties is considered. The increase in the cation radius is shown to improve the phase stability and decrease the conductivity under both oxidative and reductive conditions. The thermal and chemical expansion of La0.5A0.5Mn0.5Ti0.5O3–δ ceramics is studied by dilatometry in controlled atmospheres and a wide temperature range at p(O2)=10–21–0.21 atm. The coefficients of thermal expansion of La0.5A0.5Mn0.5Ti0.5O3–δ are in the interval of (10.7–14.3)× 10–6 K–1, i.e., compatible with those of standard solid electrolytes of solid-oxide fuel cells. The maximum chemical expansion does not exceed 0.2% at isothermal reduction in the CO‒CO2 mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivanov, A.I., Agarkov, D.A., Burmistrov, I.N., Kudrenko, E.A., Bredikhin, S.I., and Kharton, V.V., Russ. J. Electrochem., 2014, vol. 50, p. 730.

    Article  CAS  Google Scholar 

  2. Kolotygin, V.A., Tsipis, E.V., Ivanov, A.I., Fedotov, Y.A., Burmistrov, I.N., Agarkov, D.A., Sinitsyn, V.V., Bredikhin, S.I., and Kharton, V.V., J.Solid-State Electrochem., 2012, vol. 16, p. 2335.

    Article  CAS  Google Scholar 

  3. Kolotygin, V.A., Tsipis, E.V., Shaula, A.L., Naumovich, E.N., Frade, J.R., Bredikhin, S.I., and Kharton, V.V., J.Solid-State Electrochem., 2011, vol. 15, p. 313.

    Article  CAS  Google Scholar 

  4. Kolotygin, V.A., Tsipis, E.V., Lu, M.F., Pivak, Y.V., Yarmolenko, S.N., Bredikhin, S.I., and Kharton, V.V., Solid State Ionics, 2013, vol. 251, p. 28.

    Article  CAS  Google Scholar 

  5. Zhou, X., Yan, N., Chuang, K.T., and Luo, J., RSC Adv., 2014, vol. 4, p. 118.

    Article  CAS  Google Scholar 

  6. Ovalle, A., Ruiz-Morales, J.C., Canales-Vazquez, J., Marrero-Lopez, D., and Irvine, J.T.S., Solid State Ionics, 2006, vol. 177, p. 1997.

    Article  CAS  Google Scholar 

  7. Escudero, M.J., Irvine, J.T.S., and Daza, L., J.Power Sources, 2009, vol. 192, p. 43.

    Article  CAS  Google Scholar 

  8. Yoon, J.S., Lim, Y.-S., Choi, B.H., and Hwang, H.J., Int. J. Hydrogen Energy, 2014, vol. 39, p. 7955.

    Article  CAS  Google Scholar 

  9. Martinez-Coronado, R., Alonso, J.A., Aguadero, A., Perez-Coll, D., and Fernandez-Diaz, M.T., J.Appl. Phys., 2013, vol. 113, p. 123708.

    Article  Google Scholar 

  10. Fu, Q.X., Tietz, F., and Stover, D., J.Electrochem. Soc., 2006, vol. 153, p. D74.

    Article  CAS  Google Scholar 

  11. Hosseini, N.R., Sammes, N.M., and Chung, J.Sh., J.Power Sources, 2014, vol. 245, p. 599.

    Article  Google Scholar 

  12. Kim, J.H., Miller, D., Schlegl, H., McGrouther, D., and Irvine, J.T.S., Chem. Mater., 2011, vol. 23, p. 3841.

    Article  CAS  Google Scholar 

  13. Kim, J.H., Schlegl, H., and Irvine, J.T.S., Int. J. Hydrogen Energy, 2012, vol. 37, p. 14511.

    Article  CAS  Google Scholar 

  14. Jiang, S.P., Li, L., Ong, Kh.P., Wu, P., Li, J., and Jian Pu, J., J.Power Sources, 2008, vol. 176, p. 82.

    Article  CAS  Google Scholar 

  15. Zhang, L., Chen, X., Jiang, S.P., He, H.Q., and Xiang, Ya., Solid State Ionics, 2009, vol. 180, p. 1076.

    Article  CAS  Google Scholar 

  16. Kharton, V.V., Kovalevsky, A.V., Patrakeev, M.V., Tsipis, E.V., Viskup, A.P., Kolotygin, V.V., Yaremchenko, A.A., Shaula, A.L., Kiselev, E.A., and Waerenborgh, J.C., Chem. Mater., 2008, vol. 20, p. 6457.

    Article  CAS  Google Scholar 

  17. Hayashi, H., Inaba, H., Matsuyama, M., Lan, N.G., Dokiya, M., and Tagawa, H., Solid State Ionics, 1999, vol. 122, p. 1.

    Article  CAS  Google Scholar 

  18. Tsipis, E.V. and Kharton, V.V., J.Solid-State Electrochem., 2008, vol. 12, p. 1367.

    Article  CAS  Google Scholar 

  19. Vincent, A., Luo, J.-L., Chuang, K.T., and Sanger, A.R., J.Power Sources, 2010, vol. 195, p. 769.

    Article  CAS  Google Scholar 

  20. Patil, K.C., Hegde, M.S., Rattan, T., and Aruna, S.T., Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, New Jersey: World Scientific, 2008.

    Book  Google Scholar 

  21. Kharton, V.V., Solid State Electrochemistry I: Fundamentals, Materials and their Applications, Weinheim: Wiley-VCH, 2009.

    Book  Google Scholar 

  22. Tsipis, E.V. and Kharton, V.V., J.Solid-State Electrochem., 2008, vol. 12, p. 1039.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ivanov.

Additional information

Original Russian Text © V.A. Kolotygin, A.I. Ivanov, S.I. Bredikhin, V.V. Kharton, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 7, pp. 697–703.

Published on the basis of the materials of III All-Russia Conference “Fuel Cells and Power Plants on Their Basis,” Chernogolovka, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolotygin, V.A., Ivanov, A.I., Bredikhin, S.I. et al. Electrophysical and thermomechanical properties of perovskites La0.5A0.5Mn0.5Ti0.5O3–δ (A = Ca, Sr, Ba) used as fuel cell anodes: the effect of radius of alkali-earth cation. Russ J Electrochem 52, 622–627 (2016). https://doi.org/10.1134/S1023193516070077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516070077

Keywords

Navigation