Skip to main content
Log in

Effect of thermochemical treatment on conductivity and mechanism of current flow in MK-40 sulfocationite membrane

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of thermal treatment on the conductivity, diffusion permeability, and structure of MK-40 sulfocationite membrane is studied in the neutral, alkaline, and acidic media. Based on the experimental concentration dependences of membrane conductivity, within the extended three-wire model of conduction, the fractions of current passing through different conduction channels of membrane and the structural parameters, which characterize the volume fractions of conducting phases and their mutual orientation against the electric current, are calculated. It is found that the thermal treatment changes the mechanism of current flow in the membrane due to the reorganization of transport channels structure leading to a considerable increase in the moisture content due to an increase in the polymer macroporosity. The information on the variation of structure of transport channels in the membrane after the thermochemical treatment was obtained by the analysis of model parameters and supported by the data of independent study of its diffusion permeability and the morphology of surface and cross-section of swollen samples by the method of scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smagin, V.U., Zhurov, N.N., Yaroshevsky, D.A., and Yevdokimov, O.V., Desalination, 1983, vol. 46, p. 253.

    Article  CAS  Google Scholar 

  2. Pevnitskaya, M.V., Elektrokhimiya, 1992, vol. 28, no. 11, p. 1708.

    CAS  Google Scholar 

  3. Kusavsky, A.M. and Shulika, V.P., Desalination, 1983, vol. 46, p. 203.

    Article  Google Scholar 

  4. Shaposhnik, V.A., Reshetnikova, A.K., and Klyuchnikov, V.R., Elektrokhimiya, 1985, vol. 21, no. 12, p. 1683.

    CAS  Google Scholar 

  5. Urusov, K.Kh., Fedotov, N.A., and Astaf’eva, V.I., Ionoobmennye membrany v elektrodialize (Ion-Exchange Membranes in Electrodyalisys), Leningrad: Khimiya, 1970, p. 75.

    Google Scholar 

  6. Kneifel, K. and Hati’enbach, K., Desalination, 1980, vol. 34, p. 77.

    Article  CAS  Google Scholar 

  7. Onuki, K., Hwang, G.-J., and Arifal, Shimizu S., J. Membr. Sci., 2001, vol. 192, p. Ð. 193.

    Article  CAS  Google Scholar 

  8. Wodzki, R., Narebska, A., and Ceynowa, J., Angew. Makromol. Chem., 1982, vol. 106, no. 1885, p. 23.

    Article  CAS  Google Scholar 

  9. Grebenyuk, V.D. and Gudrit, T.D., Kolloidn. Zh., 1987, vol. 49, no. 2, p. 336.

    CAS  Google Scholar 

  10. Akberova, E.M., Kondensirovannye Sredy i Mezhfaznye Granitsy, 2014, vol. 16, no. 2, p. 147.

    CAS  Google Scholar 

  11. Shaposhnik, V.A. and Zolotareva, R.I., Elektrokhimiya, 1979, vol. 15, no. 10, p. 1545.

    CAS  Google Scholar 

  12. Greben’, V.P., Drachev, G.Yu., and Kovarskii, N.Ya., Elektrokhimiya, 1989, vol. 25, no. 4, p. 488.

    Google Scholar 

  13. De Barros, Machado, M. and Santiago, V.M.J., Electrodialysis and Water Reuse. Novel Approaches, Berlin: Springer, 2014, p. Ð. 86.

    Google Scholar 

  14. Bejerano, T., Forgacs, Ch., and Rabinowitz, J., Desalination, 1967, vol. 3, p. 129.

    Article  CAS  Google Scholar 

  15. Leitz, F.B., Accomazzo, M.A., and Mcrae, W.A., Desalination, 1974, vol. 14, p. 33.

    Article  Google Scholar 

  16. McRae, W.A., Glass, W., Leitz, F.B., Clarke, J.T., and Alexander, S.S., Desalination, 1968, vol. 4, no. 2, p. 236.

    Article  CAS  Google Scholar 

  17. Shaposhnik, V.A., Vasil’eva, V.I., and Reshetnikova, E.V., Russ. J. Electrochem., 2000, vol. 36, p. 773.

    Article  CAS  Google Scholar 

  18. Shaposhnik, V.A., Vasil’eva, V.I., Ugryumov, R.B., and Kozhevnikov, M.S., Russ. J. Electrochem., 2006, vol. 42, p. Ð. 531.

    Article  CAS  Google Scholar 

  19. Gnusin, N.P. and Grebenyuk, V.D., Elektrokhimiya granulirovannykh ionitov (Electrochemistry of Granulated Ionites), Kiev: Naukova dumka, 1972.

    Google Scholar 

  20. Berezina, N.P., Ivina, O.P., and Rubinina, D.V., Diagnostika ionoobmennykh membran posle real’nogo elektrodializa (Diagnostics of Ion Exchange Membranes after Real Electrodialysis), Krasnodar: Kuban Gos. Univ., 1990.

    Google Scholar 

  21. Dammak, L., Larchet, Ch., and Grande, D., Sep. Purif. Technol., 2009, vol. 69, p. 43.

    Article  CAS  Google Scholar 

  22. Pis’menskaya, N.D., Nikonenko, V.V., Mel’nik, N.A., Shevtsova, K.A., Dammak, L., and Larchet, C., Membrany Membr. Tekhnol., 2011, vol. 1, no. 3, p. 201.

    Google Scholar 

  23. Zabolotskii, V.I., Bugakov, V.V., Sharafan, M.V., and Chermit, R.Kh., Russ. J. Electrochem., 2012, vol. 48, p. 650.

    Article  CAS  Google Scholar 

  24. Zabolotskii, V.I., Chermit, R.Kh., and Sharafan, M.V., Russ. J. Electrochem., 2014, vol. 50, p. 38.

    Article  CAS  Google Scholar 

  25. Gnusin, N.P., Annikova, L.A., Demina, O.A., and Berezina, N.P., Sorbts. Khromatograf. Protsessy, 2007, vol. 7, p. 746.

    Google Scholar 

  26. Gnusin, N.P., Demina, O.A., and Annikova, L.A., Russ. J. Electrochem., 2009, vol. 45, p. Ð. 490.

    Article  CAS  Google Scholar 

  27. Gnusin, N.P., Berezina, N.P., Demina, O.A., and Ivina, O.P., Zh. Fiz. Khim., 1994, vol. 68, no. 3, p. 565.

    CAS  Google Scholar 

  28. Berezina, N.P., Kononenko, N.A., Demina, O.A., and Gnusin, N.P., Polymer Science, Series A. Polymer Physics, 2004, vol. 46, p. 1071.

    CAS  Google Scholar 

  29. Lichtenecker, K. and Rother, K., Physik. Zeitschr., 1931, vol. 32, p. 255.

    Google Scholar 

  30. Gnusin, N.P. and Berezina, N.P., Zh. Fiz. Khim., 1995, vol. 69, p. 2129.

    CAS  Google Scholar 

  31. Gnusin, N.P. and Meshechkov, A.I., Elektrokhimiya, 1980, vol. 16, p. 552.

    CAS  Google Scholar 

  32. Demina, O.A., Kononenko, N.A., and Falina, I.V., Membrany Membr. Tekhnol., 2014, vol. 4, no. 2, p. 83.

    Google Scholar 

  33. Kononenko, N.A., Berezina, N.P., Vol’fkovich, Yu.M., Shkol’nikov, E.I., and Blinov, I.A., Zh. Prikl. Khim., 1985, vol. 58, no. 10, p. 2199.

    CAS  Google Scholar 

  34. Berezina, N.P., Kononenko, N.A., Dyomina, O.A., and Gnusin, N.P., Adv. Colloid Interface Sci. 2008, vol. 139, p. 3.

    Article  CAS  Google Scholar 

  35. GOST (State Standard) 10899-75: Ionites. Procedure of determination of resistance of ion exchange membranes against chemical media, 1978.

  36. Shaposhnik, V.A., Emel’yanov, D.E., and Drobysheva, I.V., Kolloidn. Zh., 1984, vol. 46, no. 4, p. 820.

    CAS  Google Scholar 

  37. Gnusin, N.P., Demina, O.A., Meshechkov, A.I., and Tur’yan, I.Ya., Elektrokhimiya, 1985, vol. 21, no. 11, p. 1525.

    CAS  Google Scholar 

  38. Isaev, N.I. and Shaposhnik, V.A., Zavod. Lab., 1965, vol. 31, no. 10, p. 1213.

    CAS  Google Scholar 

  39. Badessa, T.S. and Shaposhnik, V.A., Kondensirovannye Sredy i Mezhfaznye Granitsy, 2014, vol. 16, no. 2, p. 129.

    CAS  Google Scholar 

  40. Berezina, N.P., Kononenko, N.A., Dvorkina, G.A, and Shel’deshov, N.V., Fiziko-khimicheskie svoistva ionoobmennykh materialov (Physicochemical Properties of Ion Exchange Materials), Krasnodar: Kuban. Gos. Univ., 1999.

    Google Scholar 

  41. Goldstein, J., Newbury, D.E., Echlin, P., Joy, D., Fiori, C., and Lifshin, E. Scanning Electron Microscopy and X-ray Microanalysis, New York: Plenum, 1981.

    Book  Google Scholar 

  42. Sirota, E.A., Kranina, N.A., Vasil’eva, V.I., Malykhin, M.D., and Selemenev, V.F., Vestn. VGU. Ser.: Khimiya. Biologiya. Farmatsiya, 2011, no. 2, p. 53.

    Google Scholar 

  43. Vasil’eva, V.I., Kranina, N.A., Malykhin, M.D., Akberova, E.M., and Zhil’tsova, A.V., J. Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2013, vol. 7, no. 1, p. 144.

    Article  Google Scholar 

  44. Vasil’eva, V.I., Akberova, E.M., Zhil’tsova, A.V., Chernykh, E.I., Sirota, E.A., and Agapov, B.L., J. Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2013, vol. 7, no. 5, p. 833.

    Article  Google Scholar 

  45. Vasil’eva, V.I., Akberova, E.M., Shaposhnik, V.A., and Malykhin, M.D., Russ. J. Electrochem., 2014, vol. 50, p. 789.

    Article  Google Scholar 

  46. Vasil’eva, V.I., Pis’menskaya, N.D., Akberova, E.M., and Nebavskaya, K.A., Zh. Fiz. Khim., 2014, vol. 88, no. 8, p. 1114.

    Google Scholar 

  47. Akberova, E.M. and Malykhin, M.D., Sorbts. Khromatograf. Protsessy, 2014, vol. 14, no. 2, p. 232.

    CAS  Google Scholar 

  48. Gnusin, N.P., Berezina, N.P., Demina, O.A., and Kononenko, N.A., Russ. J. Electrochem., 1996, vol. 32, p. 154.

    CAS  Google Scholar 

  49. Henry, J.L. and Garton, A. Am. Chem. Soc., Polymer Preprints, Division of Polymer Chemistry, 1989, vol. 30, no 1, p. 183.

    CAS  Google Scholar 

  50. Vasil’eva, V.I., Zhil’tsova, A.V., Akberova, E.M., and Fataeva, A.I., Kondensirovannye Sredy Mezhfaznye Granitsy, 2014, vol. 16, no. 3, p. 257.

    Google Scholar 

  51. Knyaginicheva, E.V., Belashova, E.D., Sarapulova, V.V., and Pis’menskaya, N.D., Kondensirovannye Sredy i Mezhfaznye Granitsy, 2014, vol. 16, no. 3, p. 282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vasil’eva.

Additional information

Original Russian Text © V.I. Vasil’eva, E.M. Akberova, O.A. Demina, N.A. Kononenko, M.D. Malykhin, 2015, published in Elektrokhimiya, 2015, Vol. 51, No. 7, pp. 711–721.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’eva, V.I., Akberova, E.M., Demina, O.A. et al. Effect of thermochemical treatment on conductivity and mechanism of current flow in MK-40 sulfocationite membrane. Russ J Electrochem 51, 627–637 (2015). https://doi.org/10.1134/S1023193515070101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515070101

Keywords

Navigation