Skip to main content
Log in

Electrochemical behavior of valacyclovir and its square wave and differential pulse voltammetric determination in pharmaceuticals and biological fluids

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The anodic behavior and determination of Valacyclovir (VALA) on boron-doped diamond (BDD) electrode was investigated using cyclic, differential pulse and square wave voltammetric tecnique. The oxidation of VALA was irreversible and exhibited diffusion controlled process depending on pH. Differential pulse (DPV) and square wave voltammetric (SWV) methods were developed for its determination in pharmaceutical dosage forms and biological fluids according to the linear relation between the peak current and VALA concentration. The peak current is found to be linear over the range of concentration 8 × 10−7 to 1 × 10−4 M in phosphate buffer at pH 4.0 for differential pulse and 2 × 10−6 to 1 × 10−4 M in phosphate buffer at pH 6.0 for square wave voltammetric technique using boron-doped diamond electrode. The repeatability and reproducibility of the methods for all media (supporting electrolyte, serum and urine samples) were determined. Precision and accuracy were also cheched in all media. The standard addition method was used for the recovery studies. No electroactive interferences were found in biological fluids from the endogenous substances and additives present in pharmaceutical dosage form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Medmicro Chapter 52. Archived from the original on 18 August 2000, Retrieved 2009-02-21.

  2. Rick, D. and Leslie, H.N., Contemporary Medical-Surgical Nursing, 2011, p. 397.

    Google Scholar 

  3. http://en.wikipedia.org/wiki/Antiviral_drug.

  4. Maria, K., Evagelos, G., Sofia, G., and Michael, K., J. Chromatogr., Ser. B, 2008, vol. 864, p. 78.

    Article  Google Scholar 

  5. Ganesh, M., Narasimharao, C.V., Kumar, S., Kamalakannan, K., Vinoba, M., Mahajan, H.S., and Sivakumar, T., E-J. Chem., 2009, vol. 6, p. 814.

    Article  CAS  Google Scholar 

  6. Reddy, D.V.P., Gurupadayya, B.M., Manohara, Y.N., and Bhaskar, V.V., Asian. J. Chem., 2007, vol. 19, p. 2797.

    CAS  Google Scholar 

  7. Babu, G.S., Babu, I.S., Kumar, N.K., Yugandhar, N.M., and Raju Ch.A.I., Asian. J. Chem., 2007, vol. 19, p. 1642.

    CAS  Google Scholar 

  8. Kanneti, R., Rajesh, R., Raj J.R.A., and Bhatt, P.A., Chromatographia, 2009, vol, 70, p. 407.

    Article  CAS  Google Scholar 

  9. Yadav, M., Upadhyay, V., Singhal, P., Goswami, S., and Shrivastav, P.S., J. Chromatogr. Ser. B, 2009, vol. 877, p. 680.

    Article  CAS  Google Scholar 

  10. Jadhav, A.S., Pathare, D.B., and Shingare, M.S., J. Pharmaceut. Biomed. Analysis, 2007, vol. 43, p. 1568.

    Article  CAS  Google Scholar 

  11. Rao, P.N., Rajeswari, K.R., Rao V.J., and Seshagiri, Rao J.V.L.N., Asian. J. Chem., 2006, vol. 18, p. 2552.

    CAS  Google Scholar 

  12. Palacios, M.L., Demasi, G., Pizzorno, A.T., and Segall, A.I., J. Liq. Chromatogr. Related Technol., 2005, vol. 5, p. 751.

    Article  Google Scholar 

  13. Savaser, A., Ozkan, C.K., Ozkan, Y., Bengi, U., and Sibel, A.O., J. Liq. Chromatogr. Related Technol., 2003, vol. 26, p. 1755.

    Article  CAS  Google Scholar 

  14. Uslu, B., Ozkan, S.A., and Senturk, Z., Analytica Chimaca Acta, 2006, vol. 555, p. 341.

    Article  CAS  Google Scholar 

  15. Elen, R.S., Medeiros, R.A., Rocha, R.C., and Fatibello, O., Talanta, 2010, vol. 81, p. 1418.

    Article  Google Scholar 

  16. Golcu, A., J. Analyt. Chem., 2008, vol. 63, p. 538.

    Article  CAS  Google Scholar 

  17. Laviron, E., Roullier, L., and Degrand, C., J. Electroanal. Chem., 1980, vol. 112, p. 11.

    Article  CAS  Google Scholar 

  18. Wang J., Electroanalytical Chemistry, 3rd Ed., New York: Wiley-VCH Pub., 2008.

    Google Scholar 

  19. Kissinger, P.T. and Heineman, W.R., Laboratory Techniques in Electroanalytical Chemistry, 2nd ed., N.Y.: Marcel Dekker, 1996.

    Google Scholar 

  20. Riley, C.M. and Rosanske, T.W., Development and Validation of Analytical Methods, N.Y.: Elsevier Science Ltd., 1996.

    Google Scholar 

  21. Swartz, M.E. and Krull, I., Eds., Analytical Method Development and Validation, N.Y.: Marcel Dekker, 1997.

    Google Scholar 

  22. Tarinc, D. and Golcu, A., J. Analyt. Chem., 2013, vol. 68, p. 27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysegul Golcu.

Additional information

Published in Russian in Elektrokhimiya, 2015, Vol. 51, No. 2, pp. 178–189.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarinc, D., Golcu, A. Electrochemical behavior of valacyclovir and its square wave and differential pulse voltammetric determination in pharmaceuticals and biological fluids. Russ J Electrochem 51, 149–158 (2015). https://doi.org/10.1134/S1023193515020135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515020135

Keywords

Navigation