Skip to main content
Log in

Ag@C core–shell structure composites-decorated Ag nanoparticles: zero current potentiometry for detection of hydrogen peroxide

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Ag@C core–shell structure composites were successfully synthesized by hydrothermal method, and then Ag nanoparticles were decorated on the surface of Ag@C by reduction of AgNO3. The morphology, composition and structure of the Ag@C@Ag composites were characterized by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Cyclic voltammetry and amperometry were used to evaluate the electrocatalytic performance of the Ag@C@Ag/GCE for detection of H2O2. Meanwhile, a new electrochemical method of zero current potentiometry was used for electrochemical detection of H2O2. The linear range and the detection limit were from 0.2 to 10, and 0.07 μM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

References

  • Aslan K, Wu M, Lakowicz JR, Geddes CD (2007) Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129(6):1524–1525. doi:10.1021/ja0680820

    Article  CAS  Google Scholar 

  • Azizi SN, Ghasemi S, Samadi-Maybodi A, Ranjbar-Azad M (2015) A new modified electrode based on Ag-doped mesoporous SBA-16 nanoparticles as non-enzymatic sensor for hydrogen peroxide. Sens Actuators B Chem 216:271–278. doi:10.1016/j.snb.2015.03.078

    Article  CAS  Google Scholar 

  • Chen X, Wu G, Chen J, Chen X, Xie Z, Wang X (2011) Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J Am Chem Soc 133(11):3693–3695. doi:10.1021/ja110313d

    Article  CAS  Google Scholar 

  • Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137(1):49–58. doi:10.1039/c1an15738h

    Article  CAS  Google Scholar 

  • Davies TJ, Compton RG (2005) The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: theory. J Electroanal Chem 585(1):63–82. doi:10.1016/j.jelechem.2005.07.022

    Article  CAS  Google Scholar 

  • Demple B, Johnson A, Fung D (1986) Exonuclease III and endonuclease IV remove 3’blocks from DNA synthesis primers in H2O2-damaged Escherichia coli. Proc Natl Acad Sci 83(20):7731–7735. doi:10.1073/pnas.83.20.7731

    Article  CAS  Google Scholar 

  • Guo XX, Song ZJ, Sun JJ, Song JF (2011) Interaction of calf thymus dsDNA with anti-tumor drug tamoxifen studied by zero current potentiometry. Biosens Bioelectron 26(10):4001–4005. doi:10.1016/j.bios.2011.03.021

    Article  CAS  Google Scholar 

  • He YY, Luo M, Zhang XY, Meng J (2015) Determination of stability constants of complexes of Cu2+ and Cu+ with glycine using zero current potentiometry through electro-generating copper ions. Electrochim Acta 165:416–421. doi:10.1016/j.electacta.2015.03.043

    Article  CAS  Google Scholar 

  • Hong J, Maguhn J, Freitag D, Kettrup A (1998) Determination of H2O2 and organic peroxides by high-performance liquid chromatography with post-column UV irradiation, derivatization and fluorescence detection. Fresenius’ J Anal Chem 361(2):124–128. doi:10.1007/s002160050847

    Article  CAS  Google Scholar 

  • Jiang HL, Akita T, Ishida T, Haruta M, Xu Q (2011) Synergistic catalysis of Au@Ag core–shell nanoparticles stabilized on metal—organic framework. J Am Chem Soc 133(5):1304–1306. doi:10.1021/ja1099006

    Article  CAS  Google Scholar 

  • Liao K, Mao P, Li Y, Nan Y, Song F, Wang G, Han M (2013) A promising method for fabricating Ag nanoparticle modified nonenzyme hydrogen peroxide sensors. Sens Actuators B Chem 181:125–129. doi:10.1016/j.snb.2013.01.038

    Article  CAS  Google Scholar 

  • Liu S, Tian J, Wang L, Sun X (2011) A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon 49(10):3158–3164. doi:10.1016/j.carbon.2011.03.036

    Article  CAS  Google Scholar 

  • Lu W, Luo Y, Chang G, Sun X (2011) Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection. Biosens Bioelectron 26(12):4791–4797. doi:10.1016/j.bios.2011.06.008

    Article  CAS  Google Scholar 

  • Mao S, Long Y, Li W, Tu Y, Deng A (2013) Core–shell structured Ag@C for direct electrochemistry and hydrogen peroxide biosensor applications. Biosens Bioelectron 48:258–262. doi:10.1016/j.bios.2013.04.026

    Article  CAS  Google Scholar 

  • Matos RC, Coelho EO, de Souza CF, Guedes FA, Matos MAC (2006) Peroxidase immobilized on Amberlite IRA-743 resin for on-line spectrophotometric detection of hydrogen peroxide in rainwater. Talanta 69(5):1208–1214. doi:10.1016/j.talanta.2005.12.044

    Article  CAS  Google Scholar 

  • Miah MR, Ohsaka T (2006) Cathodic detection of H2O2 using iodide-modified gold electrode in alkaline media. Anal Chem 78(4):1200–1205. doi:10.1021/ac0515935

    Article  CAS  Google Scholar 

  • Ozsoz M, Erdem A, Kerman K, Ozkan D, Tugrul B, Topcuoglu N, Taylan M (2003) Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. Anal Chem 75(9):2181–2187. doi:10.1021/ac026212r

    Article  CAS  Google Scholar 

  • Qi CC, Zheng JB (2016) Synthesis of Fe3O4–Ag nanocomposites and their application to enzymeless hydrogen peroxide detection. Chem Pap 70(4):404–411. doi:10.1515/chempap-2015-0224

    Article  CAS  Google Scholar 

  • Qin X, Luo Y, Lu W, Chang G, Asiri AM, Al-Youbi AO, Sun X (2012) One-step synthesis of Ag nanoparticles-decorated reduced graphene oxide and their application for H2O2 detection. Electrochim Acta 79:46–51. doi:10.1016/j.electacta.2012.06.062

    Article  CAS  Google Scholar 

  • Robinson JK, Bollinger MJ, Birks JW (1999) Luminol/H2O2 chemiluminescence detector for the analysis of nitric oxide in exhaled breath. Anal Chem 71(22):5131–5136. doi:10.1021/ac990646d

    Article  CAS  Google Scholar 

  • Santhosh P, Manesh KM, Gopalan A, Lee KP (2006) Fabrication of a new polyaniline grafted multi-wall carbon nanotube modified electrode and its application for electrochemical detection of hydrogen peroxide. Anal Chim Acta 575(1):32–38. doi:10.1016/j.aca.2006.05.075

    Article  CAS  Google Scholar 

  • Tian J, Li H, Lu W, Luo Y, Wang L, Sun X (2011) Preparation of Ag nanoparticle-decorated poly (m-phenylenediamine) microparticles and their application for hydrogen peroxide detection. Analyst 136(9):1806–1809. doi:10.1039/c0an00929f

    Article  CAS  Google Scholar 

  • Ung T, Liz-Marzan LM, Mulvaney P (2001) Optical properties of thin films of Au@SiO2 particles. J Phys Chem B 105(17):3441–3452. doi:10.1021/jp003500n

    Article  CAS  Google Scholar 

  • Van Den Vlekkert H, Bousse L, De Rooij N (1988) The temperature dependence of the surface potential at the Al2O3/electrolyte interface. J Colloid Interface Sci 122(2):336–345. doi:10.1016/0021-9797(88)90369-4

    Article  Google Scholar 

  • Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130(4):421–426. doi:10.1039/b414248a

    Article  CAS  Google Scholar 

  • Wang Y, Hernandez RM, Bartlett DJ, Bingham JM, Kline TR, Sen A, Mallouk TE (2006) Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22(25):10451–10456. doi:10.1021/la0615950

    Article  CAS  Google Scholar 

  • Wang H, Wu Y, Song JF (2015) Interface potential sensing from adsorption of human serum albumin (HSA) on carbon nanotube (CNT) monitored by zero current potentiometry for HSA determination. Biosens Bioelectron 72:225–229. doi:10.1016/j.bios.2015.05.013

    Article  CAS  Google Scholar 

  • Wu NY, Gao W, He XL, Chang Z, Xu MT (2012) Direct electrochemical sensor for label-free DNA detection based on zero current potentiometry. Biosens Bioelectron 39(1):210–214. doi:10.1016/j.bios.2012.07.038

    Article  CAS  Google Scholar 

  • Wu NY, Zang YB, Gao W, Xu MT (2013) Zero current potentiometry for measuring the interface potential at the electrode/solution interface: theoretical and experimental study. Electroanalysis 25(9):2175–2180. doi:10.1002/elan.201300162

    Article  CAS  Google Scholar 

  • Xia X, Tu J, Zhang Y, Wang X, Gu C, Zhao XB, Fan HJ (2012) High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 6(6):5531–5538. doi:10.1021/nn301454q

    Article  CAS  Google Scholar 

  • Xu J, Huang W, McCreery RL (1996) Isotope and surface preparation effects on alkaline dioxygen reduction at carbon electrodes. J Electroanal Chem 410(2):235–242. doi:10.1016/0022-0728(96)04545-7

    Article  Google Scholar 

  • Yin G, Xing L, Ma XJ, Wan J (2014) Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles. Chem Pap 68(4):435–441. doi:10.2478/s11696-013-0473-y

    Article  CAS  Google Scholar 

  • Zhang J, Zheng J (2015) An enzyme-free hydrogen peroxide sensor based on Ag/FeOOH nanocomposites. Anal Methods 7(5):1788–1793. doi:10.1039/c4ay02881c

    Article  CAS  Google Scholar 

  • Zhou X, Dai X, Li J, Long Y, Li W, Tu Y (2015) A sensitive glucose biosensor based on Ag@C core–shell matrix. Mater Sci Eng C 49:579–587. doi:10.1016/j.msec.2015.01.063

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this project by the National Science Fund of China (No. 21275116 and 21575113), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20126101120023), the Natural Science Fund of Shaanxi Province in China (No. 2013KJXX-25), the Fund of Shaanxi Province Educational Committee of China (No. 12JK0576), the Scientific Research Foundation of Shaanxi Provincial Key Laboratory (No. 14JS094, 15JS100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinglin Sheng or Jianbin Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, H., Sheng, Q. & Zheng, J. Ag@C core–shell structure composites-decorated Ag nanoparticles: zero current potentiometry for detection of hydrogen peroxide. Chem. Pap. 71, 535–542 (2017). https://doi.org/10.1007/s11696-016-0001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0001-y

Keywords

Navigation