Skip to main content
Log in

X-Linked CNV in Pathogenetics of Intellectual Disability

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The review considers monogenic and chromosomal mutations associated with X-linked intellectual disability. Peculiarities of the development of the clinical phenotype in cases of different mutations were described. Special attention is paid to X-linked CNVs (microdeletions and microduplications). Chromosomal microaberrations most frequently found in patients with intellectual disability are presented. A modifying effect of X chromosome inactivation on the phenotype of carriers of X-linked mutations is discussed. The problems of interpretation of the clinical significance of X-linked CNVs are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Leonard, H. and Wen, X., The epidemiology of mental retardation: challenges and opportunities in the new millennium, Ment. Retard. Dev. Disabil. Res. Rev., 2002, vol. 8, pp. 117—134. https://doi.org/10.1002/mrdd.10031

    Article  PubMed  Google Scholar 

  2. Penrose, L.S., A Clinical and Genetic Study of 1280 Cases of Mental Defect, London: Medical Research Council, 1938.

    Google Scholar 

  3. Lehrke, R.G., X-linked mental retardation and verbal disability, Birth Defects Orig. Artic. Ser., 1974, vol. 10, pp. 1—100.

    CAS  PubMed  Google Scholar 

  4. Herbst, D.S. and Miller, J.R., Nonspecific X-linked mental retardation II: the frequency in British Columbia, Am. J. Hum. Genet., 1980, vol. 7, pp. 461—469. https://doi.org/10.1002/ajmg.1320070407

    Article  CAS  Google Scholar 

  5. Ross, M.T., Grafham, D.V., Coffey, A.J., et al., The DNA sequence of the human X chromosome, Nature, 2005, vol. 434, pp. 325—337. https://doi.org/10.1038/nature03440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gécz, J., Shoubridge, C., and Corbett, M., The genetic landscape of intellectual disability arising from chromosome X, Trends Genet., 2009, vol. 25, no. 7, pp. 308—316. https://doi.org/10.1016/j.tig.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  7. Stevenson, R., Schwartz, C., and Rogers, C., Atlas of X‑Linked Intellectual Disability Syndromes, New York: Oxford Press, 2012.

    Google Scholar 

  8. XLID Genetic Research—Greenwood Genetic Center, SC. Greenwood Genetic Center. https://www.ggc.org/xlid-genetic-research. Accessed April 1, 2022.

  9. Coffee, B., Keith, K., Albizua, I., et al., Incidence of Fragile X syndrome by newborn screening for methylated FMR1 DNA, Am. J. Hum. Genet., 2009, vol. 85, no. 4, pp. 503—514. https://doi.org/10.1016/j.ajhg.2009.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Voinova, V.Yu., Vorsanova, S.G., Yurov, Yu.B., and Yurov, I.Yu., The diagnostic algorithm for X-linked forms of intellectual disability in children, Ross. Vestn. Perinatol. Pediatr., 2016, vol. 61, pp. 34—40. https://doi.org/10.21508/1027-4065-2016-61-5-34-41

    Article  Google Scholar 

  11. Lisik, M.Z., Health problems in females carriers of premutation in the FMR1 gene, Psychiatr. Pol., 2017, vol. 51, no. 5, pp. 899—907. https://doi.org/10.12740/PP/65778

    Article  PubMed  Google Scholar 

  12. Chiurazzi, P., Tabolacci, E., and Neri, G., X-linked mental retardation (XLMR): from clinical conditions to cloned genes, Crit. Rev. Clin. Lab. Sci., 2004, vol. 41, no. 2, pp. 117—158. https://doi.org/10.1080/10408360490443013

    Article  CAS  PubMed  Google Scholar 

  13. Wilson, G., Richards, C., Katz, K., and Brookshire, G., Non-specific X linked mental retardation with aphasia exhibiting genetic linkage to chromosomal region Xp11, J. Med. Genet., 1992, vol. 29, no. 9, pp. 629—634. https://doi.org/10.1136/jmg.29.9.629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wraith, J., Scarpa, M., Beck, M., et al., Mucopolysaccharidosis type II (Hunter syndrome): a clinical review and recommendations for treatment in the era of enzyme replacement therapy, Eur. J. Pediatr., 2007, vol. 167, no. 3, pp. 267—277. https://doi.org/10.1007/s00431-007-0635-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Solov’eva, E.V., Minaicheva, L.I., Skleimova, M.M., et al., Preimplantation genetic testing for Hunter syndrome: a case report, Med. Genet., 2021, vol. 20, no. 9(230), pp. 34—44. https://doi.org/10.25557/2073-7998.2021.09.34-44

  16. Moog, U., Smeets, E.E., van Roozendaal, K.E.P., et al., Neurodevelopmental disorders in males related to the gene causing Rett syndrome in females (MECP2), Eur. J. Paediatr. Neurol., 2003, vol. 7, no. 1, pp. 5—12. https://doi.org/10.1016/S1090-3798(02)00134-4

    Article  PubMed  Google Scholar 

  17. Villard, L., MECP2 mutations in males, J. Med. Genet., 2007, vol. 44, no. 7, pp. 417—423. https://doi.org/10.1136/jmg.2007.049452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gécz, J. and Mulley, J., Genes for cognitive function: developments on the X, Genome Res., 2000, vol. 10, no. 2, pp. 157—163. https://doi.org/10.1101/gr.10.2.157

    Article  PubMed  Google Scholar 

  19. Chiurazzi, P. and Pirozzi, F., Advances in understanding—genetic basis of intellectual disability, F1000Research, 2016, vol. 5, p. 599. https://doi.org/10.12688/f1000research.7134.1

    Article  CAS  Google Scholar 

  20. Piton, A., Redin, C., and Mandel, J., XLID-causing mutations and associated genes challenged in light of data from large-scale human exome sequencing, Am. J. Hum. Genet., 2013, vol. 93, no. 2, pp. 368—383. https://doi.org/10.1016/j.ajhg.2013.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kato, M., Saitoh, S., Kamei, A., et al., A longer polyalanine expansion mutation in the ARX gene causes early infantile epileptic encephalopathy with suppression-burst pattern (Ohtahara syndrome), Am. J. Hum. Genet., 2007, vol. 81, no. 2, pp. 361—366. https://doi.org/10.1086/518903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wallerstein, R., Sugalski, R., Cohn, L., et al., Expansion of the ARX spectrum, Clin. Neurol. Neurosurg., 2008, vol. 110, no. 6, pp. 631—634. https://doi.org/10.1016/j.clineuro.2008.03.007

    Article  PubMed  Google Scholar 

  23. Schwartz, C.E., X-Linked Intellectual Disability Genetics, Chichester: Wiley, 2015.

    Book  Google Scholar 

  24. Bassani, S., Zapata, J., Gerosa, L., et al., The neurobiology of X-linked intellectual disability, Neuroscientist, 2013, vol. 19, no. 5, pp. 541—552. https://doi.org/10.1177/1073858413493972

    Article  PubMed  Google Scholar 

  25. Pavlowsky, A., Gianfelice, A., Pallotto, M., et al., A postsynaptic signaling pathway that may account for the cognitive defect due to IL1RAPL1 mutation, Curr. Biol., 2010, vol. 20, no. 2, pp. 103—115. https://doi.org/10.1016/j.cub.2009.12.030

    Article  CAS  PubMed  Google Scholar 

  26. Bassani, S., Cingolani, L.A., Valnegri, P., et al., The X‑linked intellectual disability protein TSPAN7 regulates excitatory synapse development and AMPAR trafficking, Neuron, 2012, vol. 73, no. 6, pp. 1143—1158. https://doi.org/10.1016/j.neuron.2012.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bukalo, O. and Dityatev, A., Synaptic cell adhesion molecules, Adv. Exp. Med. Biol., 2012, vol. 970, pp. 97—128. https://doi.org/10.1007/978-3-7091-0932-8_5

    Article  CAS  PubMed  Google Scholar 

  28. Bauters, M., Weuts, A., Vandewalle, J., et al., Detection and validation of copy number variation in X‑linked mental retardation, Cytogenet. Genome Res., 2008, vol. 123, nos. 1—4, pp. 44—53. https://doi.org/10.1159/000184691

    Article  CAS  PubMed  Google Scholar 

  29. Froyen, G., Van Esch, H., Bauters, M., et al., Detection of genomic copy number changes in patients with idiopathic mental retardation by high-resolution X-array-CGH: important role for increased gene dosage of XLMR genes, Hum. Mutat., 2007, vol. 28, pp. 1034—1042. https://doi.org/10.1002/humu.20564

    Article  CAS  PubMed  Google Scholar 

  30. Whibley, A., Plagnol, V., Tarpey, P., et al., Fine-scale survey of X chromosome copy number variants and indels underlying intellectual disability, Am. J. Hum. Genet., 2010, vol. 87, no. 2, pp. 173—188. https://doi.org/10.1016/j.ajhg.2010.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Piton, A., Michaud, J., Peng, H., et al., Mutations in the calcium-related gene IL1RAPL1 are associated with autism, Hum. Mol. Genet., 2008, vol. 17, no. 24, pp. 3965—3974. https://doi.org/10.1093/hmg/ddn300

    Article  CAS  PubMed  Google Scholar 

  32. Franek, K.J., Butler, J., Johnson, J., et al., Deletion of the immunoglobulin domain of IL1RAPL1 results in nonsyndromic X-linked intellectual disability associated with behavioral problems and mild dysmorphism, Am. J. Med. Genet., Part A, 2011, vol. 155, no. 5, pp. 1109—1114. https://doi.org/10.1002/ajmg.a.33833

    Article  CAS  Google Scholar 

  33. Froyen, G., Corbett, M., Vandewalle, J., et al., Submicroscopic duplications of the hydroxysteroid dehydrogenase HSD17B10 and the E3 ubiquitin ligase HUWE1 are associated with mental retardation, Am. J. Hum. Genet., 2008, vol. 82, no. 2, pp. 432—443. https://doi.org/10.1016/j.ajhg.2007.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. López, M., Pérez-Grijalba, V., García-Cobaleda, I., and Domínguez-Garrido, E., A 22.5 kb deletion in CUL4B causing Cabezas syndrome identified using CNV approach from WES data, Clin. Case Rep., 2020, vol. 8, no. 12, pp. 3183—3187. https://doi.org/10.1002/ccr3.3381

    Article  Google Scholar 

  35. Nascimento, R., Otto, P., de Brouwer, A., and Vianna-Morgante, A., UBE2A, which encodes a ubiquitin-conjugating enzyme, is mutated in a novel X-linked mental retardation syndrome, Am. J. Hum. Genet., 2006, vol. 79, no. 3, pp. 549—555. https://doi.org/10.1086/507047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Honda, S., Orii, K., Kobayashi, J., et al., Novel deletion at Xq24 including the UBE2A gene in a patient with X-linked mental retardation, J. Hum. Genet., 2010, vol. 55, no. 4, pp. 244—247. https://doi.org/10.1038/jhg.2010.14

    Article  PubMed  Google Scholar 

  37. Thunstrom, S., Sodermark, L., Ivarsson, L., et al., UBE2A deficiency syndrome: a report of two unrelated cases with large Xq24 deletions encompassing UBE2A gene, Am. J. Med. Genet., Part A, 2014, vol. 167, no. 1, pp. 204—210. https://doi.org/10.1002/ajmg.a.36800

    Article  CAS  Google Scholar 

  38. Tolmacheva, E., Kashevarova, A., Nazarenko, L., et al., Delineation of clinical manifestations of the inherited Xq24 microdeletion segregating with sXCI in mothers: two novel cases with distinct phenotypes ranging from UBE2A deficiency syndrome to recurrent pregnancy loss, Cytogenet. Genome Res., 2020, vol. 160, no. 5, pp. 245—254. https://doi.org/10.1159/000508050

    Article  CAS  PubMed  Google Scholar 

  39. Verkerk, A., Zeidler, S., Breedveld, G., et al., CXorf56, a dendritic neuronal protein, identified as a new candidate gene for X-linked intellectual disability, Eur. J. Hum. Genet., 2018, vol. 26, no. 4, pp. 552—560. https://doi.org/10.1038/s41431-017-0051-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neri, G., Schwartz, C., Lubs, H., and Stevenson, R., X-linked intellectual disability update 2017, Am. J. Med. Genet., Part A, 2018, vol. 176, no. 6, pp. 1375—1388. https://doi.org/10.1002/ajmg.a.38710

    Article  Google Scholar 

  41. van Asbeck, E., Ramalingam, A., Dvorak, C., Chen, T., and Morava, E., Duplication at Xq28 involving IKBKG is associated with progressive macrocephaly, recurrent infections, ectodermal dysplasia, benign tumors, and neuropathy, Clin. Dysmorphol., 2014, vol. 23, no. 3, pp. 77—82. https://doi.org/10.1097/mcd.0000000000000038

    Article  PubMed  Google Scholar 

  42. Popovici, C., Busa, T., Boute, O., et al., Whole ARX gene duplication is compatible with normal intellectual development, Am. J. Med. Genet., Part A, 2014, vol. 164, no. 9, pp. 2324—2327. https://doi.org/10.1002/ajmg.a.36564

    Article  CAS  Google Scholar 

  43. Maurin, M., Arfeuille, C., Sonigo, P., et al., Large duplications can be benign copy number variants: a case of a 3.6-Mb Xq21.33 duplication, Cytogenet. Genome Res., 2017, vol. 151, no. 3, pp. 115—118. https://doi.org/10.1159/000460278

    Article  CAS  PubMed  Google Scholar 

  44. Czakó, M., Till, Á., Zima, J., et al., Xp11.2 duplication in females: unique features of a rare copy number variation, Front. Genet., 2021, vol. 12. https://doi.org/10.3389/fgene.2021.635458

  45. Froyen, G., Belet, S., Martinez, F., et al., Copy-number gains of HUWE1 due to replication- and recombination-based rearrangements, Am. J. Hum. Genet., 2012, vol. 91, no. 2, pp. 252—264. https://doi.org/10.1016/j.ajhg.2012.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Turner, G., Gedeon, A., and Mulley, J., X-linked mental retardation with heterozygous expression and macrocephaly: pericentromeric gene localization, Am. J. Med. Genet., 1994, vol. 51, no. 4, pp. 575—580. https://doi.org/10.1002/ajmg.1320510456

    Article  CAS  PubMed  Google Scholar 

  47. Regis, S., Grossi, S., Corsolini, F., et al., PLP1 gene duplication causes overexpression and alteration of the PLP/DM20 splicing balance in fibroblasts from Pelizaeus—Merzbacher disease patients, Biochim. Biophys. Acta, Mol. Basis Dis., 2009, vol. 1792, no. 6, pp. 548—554. https://doi.org/10.1016/j.bbadis.2009.04.002

    Article  CAS  Google Scholar 

  48. Kumar, R., Corbett, M.A., Van Bon, B.W., et al., Increased STAG2 dosage defines a novel cohesinopathy with intellectual disability and behavioral problems, Hum. Mol. Genet., 2015, vol. 24, pp. 7171—7181. https://doi.org/10.1093/hmg/ddv414

    Article  CAS  PubMed  Google Scholar 

  49. Møller, R., Jensen, L., Maas, S., et al., X-linked congenital ptosis and associated intellectual disability, short stature, microcephaly, cleft palate, digital and genital abnormalities define novel Xq25q26 duplication syndrome, Hum. Genet., 2013, vol. 133, no. 5, pp. 625—638. https://doi.org/10.1007/s00439-013-1403-3

    Article  PubMed  Google Scholar 

  50. Schroer, R.J., Beaudet, A.L., Shinawi, M., et al., Duplication of OCRL and adjacent genes associated with autism but not Lowe syndrome, Am. J. Med. Genet., Part A, 2012, vol. 158, pp. 2602—2605. https://doi.org/10.1002/ajmg.a.35566

    Article  CAS  Google Scholar 

  51. Vandewalle, J., Van Esch, H., Govaerts, K., et al., Dosage-dependent severity of the phenotype in patients with mental retardation due to a recurrent copy-number gain at Xq28 mediated by an unusual recombination, Am. J. Hum. Genet., 2009, vol. 85, no. 6, pp. 809—822. https://doi.org/10.1016/j.ajhg.2009.10.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brand, B., Blesson, A., and Smith-Hicks, C., The impact of X-chromosome inactivation on phenotypic expression of X-linked neurodevelopmental disorders, Brain Sci., 2021, vol. 11, no. 7, p. 904. https://doi.org/10.3390/brainsci11070904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. El-Hattab, A., Bournat, J., Eng, P., et al., Microduplication of Xp11.23p11.3 with effects on cognition, behavior, and craniofacial development, Clin. Genet., 2010, vol. 79, no. 6, pp. 531—538. https://doi.org/10.1111/j.1399-0004.2010.01496.x

    Article  CAS  Google Scholar 

  54. Cox, R., Krauss, M., Balis, M., and Dancis, J., Evidence for transfer of enzyme product as the basis of metabolic cooperation between tissue culture fibroblasts of Lesch—Nyhan disease and normal cells, Proc. Natl. Acad. Sci. U.S.A., 1970, vol. 67, no. 3, pp. 1573—1579. https://doi.org/10.1073/pnas.67.3.1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Migeon, B.R., Studies of skin fibroblasts from 10 families with HGPRT deficiency, with reference in X-chromosomal inactivation, Am. J. Hum. Genet., 1971, vol. 23, no. 2, p. 199.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Migeon, B.R., Sprenkle, J.A., Liebaers, I., et al., X‑linked Hunter syndrome: the heterozygous phenotype in cell culture, Am. J. Hum. Genet., 1977, vol. 29, no. 5, p. 448.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Plenge, R., Stevenson, R., Lubs, H., et al., Skewed X‑chromosome inactivation is a common feature of X‑linked mental retardation disorders, Am. J. Hum. Genet., 2002, vol. 71, no. 1, pp. 168—173. https://doi.org/10.1086/341123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gibbons, R., McDowell, T., Raman, S., et al., Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation, Nat. Genet., 2000, vol. 24, no. 4, pp. 368—371. https://doi.org/10.1038/74191

    Article  CAS  PubMed  Google Scholar 

  59. Migeon, B., X-linked diseases: susceptible females, Genet. Med., 2020, vol. 22, no. 7, pp. 1156—1174. https://doi.org/10.1038/s41436-020-0779-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mellén, M., Ayata, P., Dewell, S., et al., MeCP2 binds to 5hmc enriched within active genes and accessible chromatin in the nervous system, Cell, 2012, vol. 151, no. 7, pp. 1417—1430. https://doi.org/10.1016/j.cell.2012.11.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Srivastava, S., Sahin, M., and Prock, L., Translational medicine strategies in drug development for neurodevelopmental disorders, Handb. Behav. Neurosci., 2019, vol. 29, pp. 309—331. https://doi.org/10.1016/B978-0-12-803161-2.00022-9

    Article  Google Scholar 

  62. Zhang, Q., Zhao, Y., Bao, X., et al., Familial cases and male cases with MECP2 mutations, Am. J. Med. Genet., Part B, 2017, vol. 174, no. 4, pp. 451—457. https://doi.org/10.1002/ajmg.b.32534

    Article  CAS  Google Scholar 

  63. Migeon, B.R., Moser, H.W., Moser, A.B., et al., Adrenoleukodystrophy: evidence for X linkage, inactivation, and selection favoring the mutant allele in heterozygous cells, Proc. Natl. Acad. Sci. U.S.A., 1981, vol. 78, no. 8, pp. 5066—5070.

    Article  CAS  Google Scholar 

  64. Di-Battista, A., Meloni, V., Silva, M., et al., Unusual X-chromosome inactivation pattern in patients with Xp11.23-p11.22 duplication: report and review, Am. J. Med. Genet., Part A, 2016, vol. 170, no. 12, pp. 3271—3275. https://doi.org/10.1002/ajmg.a.37888

    Article  CAS  Google Scholar 

  65. Esplin, E., Li, B., Slavotinek, A., et al., Nine patients with Xp22.31 microduplication, cognitive deficits, seizures, and talipes anomalies, Am. J. Med. Genet., Part A, 2014, vol. 164, no. 8, pp. 2097—2103. https://doi.org/10.1002/ajmg.a.36598

    Article  CAS  Google Scholar 

  66. Li, F., Shen, Y., Köhler, U., et al., Interstitial microduplication of Xp22.31: causative of intellectual disability or benign copy number variant, Eur. J. Med. Genet., 2010, vol. 53, no. 2, pp. 93—99. https://doi.org/10.1016/j.ejmg.2010.01.004

    Article  PubMed  Google Scholar 

  67. Liu, P., Erez, A., Sreenath Nagamani, S., et al., Copy number gain at Xp22.31 includes complex duplication rearrangements and recurrent triplications, Hum. Mol. Genet., 2011, vol. 20, no. 10, pp. 1975—1988. https://doi.org/10.1093/hmg/ddr078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gubb, S., Brcic, L., Underwood, J., et al., Medical and neurobehavioural phenotypes in male and female carriers of Xp22.31 duplications in the UK Biobank, Hum. Mol. Genet., 2020, vol. 29 no. 17, pp. 2872—2881. https://doi.org/10.1093/hmg/ddaa174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Noor, A., Gianakopoulos, P.J., Fernandez, B., et al., Copy number variation analysis and sequencing of the X-linked mental retardation gene TSPAN7/TM4SF2 in patients with autism spectrum disorder, Psychiatr. Genet., 2009, vol. 19, no. 3, pp. 154—155. https://doi.org/10.1097/YPG.0b013e32832a4fe5

    Article  PubMed  Google Scholar 

  70. Cai, G., Edelmann, L., Goldsmith, J.E., et al., Multiplex ligation-dependent probe amplification for genetic screening in autism spectrum disorders: efficient identification of known microduplications and identification of a novel microduplication in ASMT, BMC Med. Genomics, 2008, vol. 1, no. 1, pp. 1—14. https://doi.org/10.1186/1755-8794-1-50

    Article  CAS  Google Scholar 

  71. Utine, G.E., Kiper, P.Ö., Alanay, Y., et al., Searching for copy number changes in nonsyndromic X-linked intellectual disability, Mol. Syndromol., 2011, vol. 2, no. 2, pp. 64—71.https://doi.org/10.1159/000334289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tolmacheva, E.N., Kashevarova, A.A., Belyaeva, E.O., et al., Clinical effects of Xp11.4 monogenic duplication involving the TSPAN7 gene, Med. Genet., 2021, vol. 20, no. 9, pp. 45—47. https://doi.org/10.25557/2073-7998.2021.09.45-47

    Article  Google Scholar 

  73. Isrie, M., Froyen, G., Devriendt, K., et al., Sporadic male patients with intellectual disability: contribution of X-chromosome copy number variants, Eur. J. Med. Genet., 2012, vol. 55, no. 11, pp. 577—585. https://doi.org/10.1016/j.ejmg.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  74. Diociaiuti, A., Angioni, A., Pisaneschi, E., et al., X‑linked ichthyosis: clinical and molecular findings in 35 Italian patients, Exp. Dermatol., 2018, vol. 28, no. 10, pp. 1156—1163. https://doi.org/10.1111/exd.13667

    Article  CAS  PubMed  Google Scholar 

  75. Pavone, P., Corsello, G., Marino, S., et al., Microcephaly/trigonocephaly, intellectual disability, autism spectrum disorder, and atypical dysmorphic features in a boy with Xp22. 31 duplication, Mol. Syndromol., 2018, vol. 9, pp. 253—258. https://doi.org/10.1159/000493174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mignon-Ravix, C., Cacciagli, P., Choucair, N., et al., Intragenic rearrangements in X-linked intellectual deficiency: results of a-CGH in a series of 54 patients and identification of TRPC5 and KLHL15 as potential XLID genes, Am. J. Med. Genet., Part A, 2014, vol. 164, no. 8, pp. 1991—1997. https://doi.org/10.1002/ajmg.a.36602

    Article  CAS  Google Scholar 

  77. Grau, C., Starkovich, M., Azamian, M., et al., Xp11.22 deletions encompassing CENPVL1, CENPVL2, MAGED1 and GSPT2 as a cause of syndromic X‑linked intellectual disability, PLoS One, 2017, vol. 12, no. 4. e0175962. https://doi.org/10.1371/journal.pone.0175962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shimojima, K., Sugawara, M., Shichiji, M., et al., Loss-of-function mutation of collybistin is responsible for X-linked mental retardation associated with epilepsy, J. Hum. Genet., 2011, vol. 56, no. 8, pp. 561—565. https://doi.org/10.1038/jhg.2011.58

    Article  CAS  PubMed  Google Scholar 

  79. Ramocki, M.B., Tavyev, Y.J., and Peters, S.U., The MECP2 duplication syndrome, Am. J. Med. Genet., Part A, 2010, vol. 152A, no. 5, pp. 1079—1088. https://doi.org/10.1002/ajmg.a.33184

    Article  Google Scholar 

  80. Wang, Z., Yan, A., Lin, Y., et al., Familial skewed X chromosome inactivation in adrenoleukodystrophy manifesting heterozygotes from a Chinese pedigree, PLoS One, 2013, vol. 8, no. 3. e57977. https://doi.org/10.1371/journal.pone.0057977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pandolfo, M., Rai, M., Remiche, G., et al., Cerebellar ataxia, neuropathy, hearing loss, and intellectual disability due to AIFM1 mutation, Neurol. Genet., 2020, vol. 6, no. 3. e420. https://doi.org/10.1212/nxg.0000000000000420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hamici, S., Bastaki, F., and Khalifa, M., Exome sequence identified a c.320A>G ALG13 variant in a female with infantile epileptic encephalopathy with normal glycosylation and random X inactivation: review of the literature, Eur. J. Med. Genet., 2017, vol. 60, no. 10, pp. 541—547. https://doi.org/10.1016/j.ejmg.2017.07.014

    Article  PubMed  Google Scholar 

  83. Wada, T., Sugie, H., Fukushima, Y., and Saitoh, S., Non-skewed X-inactivation may cause mental retardation in a female carrier of X-linked α-thalassemia/mental retardation syndrome (ATR-X): X-inactivation study of nine female carriers of ATR-X, Am. J. Med. Genet., Part A, 2005, vol. 138, no. 1, pp. 18—20. https://doi.org/10.1002/ajmg.a.30901

    Article  Google Scholar 

  84. Seto, T., Hamazaki, T., Nishigaki, S., et al., A novel CASK mutation identified in siblings exhibiting developmental disorders with/without microcephaly, Intractable Rare Dis. Res., 2017, vol. 6, no. 3, pp. 177—182. https://doi.org/10.5582/irdr.2017.01031

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhao, Y., Zhang, X., Bao, X., et al., Clinical features and gene mutational spectrum of CDKL5-related diseases in a cohort of Chinese patients, BMC Med. Genet., 2014, vol. 15, no. 1. https://doi.org/10.1186/1471-2350-15-24

  86. Gieldon, L., Mackenroth, L., Betcheva-Krajcir, E., et al., Skewed X-inactivation in a family with DLG3-associated X-linked intellectual disability, Am. J. Med. Genet., Part A, 2017, vol. 173, no. 9, pp. 2545—2550. https://doi.org/10.1002/ajmg.a.38348

    Article  CAS  Google Scholar 

  87. Kirchgessner, C., Warren, S., and Willard, H., X inactivation of the FMR1 fragile X mental retardation gene, J. Med. Genet., 1995, vol. 32, no. 12, pp. 925—929. https://doi.org/10.1136/jmg.32.12.925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wayhelova, M., Ryzí, M., Oppelt, J., et al., Novel familial IQSEC2 pathogenic sequence variant associated with neurodevelopmental disorders and epilepsy, Neurogenetics, 2020, vol. 21, no. 4, pp. 269—278. https://doi.org/10.1007/s10048-020-00616-3

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 21-65-00017, https://rscf.ru/project/21-65-00017/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Tolmacheva.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants as an object.

Additional information

Translated by A. Barkhash

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolmacheva, E.N., Fonova, E.A. & Lebedev, I.N. X-Linked CNV in Pathogenetics of Intellectual Disability. Russ J Genet 58, 1193–1207 (2022). https://doi.org/10.1134/S102279542210009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279542210009X

Keywords:

Navigation