Skip to main content
Log in

Clinical and Genetic Characteristics of Congenital Long QT Syndrome

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Long QT syndrome is a rare ion channel cardiac disorder, the main manifestations of which are prolongation of the QT interval on the ECG and ventricular arrhythmias, which can cause sudden cardiac death at a young age. Diagnosis and treatment of this syndrome is an urgent problem, since the disease is heterogeneous and effective therapy requires molecular genetic diagnosis to accurately determine the type of this pathology. This review discusses clinical and genetic characteristics of different types of congenital long QT syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Shlyakhto, E.V., Arutyunov, G.P., Belenkov, Yu.N., et al., Natsional’nye rekomendatsii po opredeleniyu riska i profilaktike vnezapnoi serdechnoi smerti (Russian Guidelines for Sudden Cardiac Death Risk Assessment and Prevention), Moscow, 2018, 2nd ed.

    Google Scholar 

  2. Il’darova, R.A., Shkol’nikova, M.A., Il’darova, R.A., et al., Modern management of young patients with long QT syndrome: from early diagnosis to implantation of cardioverter—defibrillator and monitoring of sudden death risk markers, Sib. Zh. Klin. Eksp. Med., 2015, pp. 28—35.

    Google Scholar 

  3. Wallace, E., Howard, L., Liu, M., et al., Long QT syndrome: genetics and future perspective, Pediatr. Cardiol., 2019, vol. 40, no. 7, pp. 1419—1430. https://doi.org/10.1007/S00246-019-02151-X

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schwartz, P.J., Ackerman, M.J., Antzelevitch, C., et al., Inherited cardiac arrhythmias, Nat. Rev. Dis. Primers, 2020, vol. 6, no. 1, p. 58. https://doi.org/10.1038/S41572-020-0188-7

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tfelt-Hansen, J., Winkel, B.G., Grunnet, M., et al., Cardiac channelopathies and sudden infant death syndrome, Cardiology, 2011, vol. 119, no. 1, pp. 21—33. https://doi.org/10.1159/000329047

    Article  CAS  PubMed  Google Scholar 

  6. Garcia-Elias, A. and Benito, B., Ion channel disorders and sudden cardiac death, Int. J. Mol. Sci., 2018, vol. 19, no. 3. https://doi.org/10.3390/IJMS19030692

  7. Zareba, W., Moss, A.J., Schwartz, P.J., et al., Influence of the genotype on the clinical course of the long-QT syndrome: International Long-QT Syndrome Registry Research Group, N. Engl. J. Med., 1998, vol. 339, no. 14, pp. 960—965. https://doi.org/10.1056/NEJM199810013391404

    Article  CAS  PubMed  Google Scholar 

  8. Neyroud, N., Richard, P., Vignier, N., et al., Genomic organization of the KCNQ1 K+ channel gene and identification of C-terminal mutations in the long-QT syndrome, Circ. Res., 1999, vol. 84, no. 3, pp. 290—297. https://doi.org/10.1161/01.RES.84.3.290

    Article  CAS  PubMed  Google Scholar 

  9. Dixit, G., Dabney-Smith, C., and Lorigan, G.A., The membrane protein KCNQ1 potassium ion channel: functional diversity and current structural insights, Biochim. Biophys. Acta, Biomembr., 2020, vol. 1862, no. 5, p. 183148. https://doi.org/10.1016/j.bbamem.2019.183148

    Article  CAS  Google Scholar 

  10. Mikuni, I., Torres, C.G., Bienengraeber, M.W., et al., Partial restoration of the long QT syndrome associated KCNQ1 A341V mutant by the KCNE1 β-subunit, Biochim. Biophys. Acta, 2011, vol. 1810, no. 12, p. 1285. https://doi.org/10.1016/J.BBAGEN.2011.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brink, P.A., Crotti, L., Corfield, V., et al., Phenotypic variability and unusual clinical severity of congenital long-QT syndrome in a founder population, Circulation, 2005, vol. 112, no. 17, pp. 2602—2610. https://doi.org/10.1161/CIRCULATIONAHA.105.572453

    Article  PubMed  Google Scholar 

  12. Splawski, I., Shen, J., Timothy, K.W., et al., Genomic structure of three long QT syndrome genes: KVLQT1, HERG, and KCNE1, Genomics, 1998, vol. 51, no. 1, pp. 86—97. https://doi.org/10.1006/GENO.1998.5361

    Article  CAS  PubMed  Google Scholar 

  13. Trudeau, M.C., Warmke, J.W., Ganetzky, B., et al., HERG, a human inward rectifier in the voltage-gated potassium channel family, Science, 1995, vol. 269, no. 5220, pp. 92—95. https://doi.org/10.1126/SCIENCE.7604285

    Article  CAS  PubMed  Google Scholar 

  14. Smith, P.L., Baukrowitz, T., and Yellen, G., The inward rectification mechanism of the HERG cardiac potassium channel, Nature, 1996, vol. 379, no. 6568, pp. 833—836. https://doi.org/10.1038/379833A0

    Article  CAS  PubMed  Google Scholar 

  15. Sanguinetti, M.C., Jiang, C., Curran, M.E., et al., A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel, Cell, 1995, vol. 81, no. 2, pp. 299—307. https://doi.org/10.1016/0092-8674(95)90340-2

    Article  CAS  PubMed  Google Scholar 

  16. Bjerregaard, P., Diagnosis and management of short QT syndrome, Heart Rhythm, 2018, vol. 15, no. 8, pp. 1261—1267. https://doi.org/10.1016/J.HRTHM.2018.02.034

    Article  PubMed  Google Scholar 

  17. McDonald, T.V., Yu, Z., Ming, Z., et al., A minK-HERG complex regulates the cardiac potassium current I(Kr), Nature, 1997, vol. 388, no. 6639, pp. 289—292. https://doi.org/10.1038/40882

  18. Bianchi, L., Shen, Z., Dennis, A.T., et al., Cellular dysfunction of LQT5-minK mutants: abnormalities of IKs, IKr and trafficking in long QT syndrome, Hum. Mol. Genet., 1999, vol. 8, no. 8, pp. 1499—1507. https://doi.org/10.1093/HMG/8.8.1499

    Article  CAS  PubMed  Google Scholar 

  19. Paulussen, A.D.C., Gilissen, R.A.H.J., Armstrong, M., et al., Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients, J. Mol. Med. (Berlin), 2004, vol. 82, no. 3, pp. 182—188. https://doi.org/10.1007/S00109-003-0522-Z

    Article  CAS  PubMed  Google Scholar 

  20. Millat, G., Chevalier, B., Restier-Miron, L., et al., Spectrum of pathogenic mutations and associated polymorphisms in a cohort of 44 unrelated patients with long QT syndrome, Clin. Genet., 2006, vol. 70, no. 3, pp. 214—227. https://doi.org/10.1111/J.1399-0004.2006.00671.X

    Article  CAS  PubMed  Google Scholar 

  21. Abbott, G.W., Sesti, F., Splawski, I., et al., MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia, Cell, 1999, vol. 97, no. 2, pp. 175—187. https://doi.org/10.1016/S0092-8674(00)80728-X

    Article  CAS  PubMed  Google Scholar 

  22. Lopes, C.M.B., Zhang, H., Rohacs, T., et al., Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies, Neuron, 2002, vol. 34, no. 6, pp. 933—944. https://doi.org/10.1016/S0896-6273(02)00725-0

    Article  CAS  PubMed  Google Scholar 

  23. Tristani-Firouzi, M., Jensen, J.L., Donaldson, M.R., et al., Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome), J. Clin. Invest., 2002, vol. 110, no. 3, pp. 381—388. https://doi.org/10.1172/JCI15183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Derst, C., Karschin, C., Wischmeyer, E., et al., Genetic and functional linkage of Kir5.1 and Kir2.1 channel subunits, FEBS Lett., 2001, vol. 491, no. 3, pp. 305—311. https://doi.org/10.1016/S0014-5793(01)02202-5

    Article  CAS  PubMed  Google Scholar 

  25. Pérez-Riera, A.R., Barbosa-Barros, R., Samesina, N., et al., Andersen—Tawil syndrome: a comprehensive review, Cardiol. Rev., 2021, vol. 29, no. 4, pp. 165—177. https://doi.org/10.1097/CRD.0000000000000326

    Article  PubMed  Google Scholar 

  26. Wickman, K., Seldin, M.F., Gendler, S.J., et al., Partial structure, chromosome localization, and expression of the mouse Girk4 gene, Genomics, 1997, vol. 40, no. 3, pp. 395—401. https://doi.org/10.1006/GENO.1997.4599

    Article  CAS  PubMed  Google Scholar 

  27. Yang, Y., Yang, Y., Liang, B., et al., Identification of a Kir3.4 mutation in congenital long QT syndrome, Am. J. Hum. Genet., 2010, vol. 86, no. 6, pp. 872—880. https://doi.org/10.1016/J.AJHG.2010.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kokunai, Y., Nakata, T., Furuta, M., et al., A Kir3.4 mutation causes Andersen—Tawil syndrome by an inhibitory effect on Kir2.1, Neurology, 2014, vol. 82, no. 12, pp. 1058—1064. https://doi.org/10.1212/WNL.0000000000000239

    Article  CAS  PubMed  Google Scholar 

  29. He, C., Zhang, H., Mirshahi, T., et al., Identification of a potassium channel site that interacts with G protein betagamma subunits to mediate agonist-induced signaling, J. Biol. Chem., 1999, vol. 274, no. 18, pp. 12517—12524. https://doi.org/10.1074/JBC.274.18.12517

    Article  CAS  PubMed  Google Scholar 

  30. Matsuda, S., Ohnuki, Y., Okami, M., et al., Jervell and Lange—Nielsen syndrome with novel KCNQ1 and additional gene mutations, Hum. Genome Var., 2020, vol. 7, no. 1. https://doi.org/10.1038/S41439-020-00121-X

  31. Witczak, O., Skålhegg, B.S., Keryer, G., et al., Cloning and characterization of a cDNA encoding an A-kinase anchoring protein located in the centrosome, AKAP450, EMBO J., 1999, vol. 18, no. 7, p. 1858. https://doi.org/10.1093/EMBOJ/18.7.1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kurokawa, J., Motoike, H.K., Rao, J., et al., Regulatory actions of the A-kinase anchoring protein Yotiao on a heart potassium channel downstream of PKA phosphorylation, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 46, p. 16374. https://doi.org/10.1073/PNAS.0405583101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, L., Marquardt, M.L., Tester, D.J., et al., Mutation of an A-kinase-anchoring protein causes long-QT syndrome, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 52, pp. 20990—20995. https://doi.org/10.1073/PNAS.0710527105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Villiers, C.P., Van Der Merwe, L., Crotti, L., et al., AKAP9 is a genetic modifier of congenital long-QT syndrome type 1, Circ. Cardiovasc. Genet., 2014, vol. 7, no. 5, pp. 599—606. https://doi.org/10.1161/CIRCGENETICS.113.000580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, Q., Li, Z., Shen, J., et al., Genomic organization of the human SCN5A gene encoding the cardiac sodium channel, Genomics, 1996, vol. 34, no. 1, pp. 9—16. https://doi.org/10.1006/GENO.1996.0236

    Article  CAS  PubMed  Google Scholar 

  36. Bennett, P.B., Yazawa, K., Makita, N., et al., Molecular mechanism for an inherited cardiac arrhythmia, Nature, 1995, vol. 376, no. 6542, pp. 683—685. https://doi.org/10.1038/376683A0

    Article  CAS  PubMed  Google Scholar 

  37. Makita, N., Yagihara, N., Crotti, L., et al., Novel calmodulin mutations associated with congenital arrhythmia susceptibility, Circ. Cardiovasc. Genet., 2014, vol. 7, no. 4, pp. 466—474. https://doi.org/10.1161/CIRCGENETICS.113.000459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Niu, D.M., Hwang, B., Hwang, H.W., et al., A common SCN5A polymorphism attenuates a severe cardiac phenotype caused by a nonsense SCN5A mutation in a Chinese family with an inherited cardiac conduction defect, J. Med. Genet., 2006, vol. 43, no. 10, pp. 817—821. https://doi.org/10.1136/JMG.2006.042192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu, F.H., Westenbroek, R.E., Silos-Santiago, I., et al., Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2, J. Neurosci., 2003, vol. 23, no. 20, pp. 7577—7585. https://doi.org/10.1523/JNEUROSCI.23-20-07577.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, R.G., Wang, Q., Xu, Y.J., et al., Mutations of the SCN4B-encoded sodium channel β4 subunit in familial atrial fibrillation, Int. J. Mol. Med., 2013, vol. 32, no. 1, pp. 144—150. https://doi.org/10.3892/IJMM.2013.1355

    Article  PubMed  Google Scholar 

  41. Ahnt, A.H., Freener, C.A., Gussoni, E., et al., The three human syntrophin genes are expressed in diverse tissues, have distinct chromosomal locations, and each bind to dystrophin and its relatives, J. Biol. Chem., 1996, vol. 271, no. 5, pp. 2724—2730. https://doi.org/10.1074/JBC.271.5.2724

    Article  Google Scholar 

  42. Adams, M.E., Dwyer, T.M., Dowler, L.L., et al., Mouse alpha 1- and beta 2-syntrophin gene structure, chromosome localization, and homology with a discs large domain, J. Biol. Chem., 1995, vol. 270, no. 43, pp. 25859—25865. https://doi.org/10.1074/JBC.270.43.25859

    Article  CAS  PubMed  Google Scholar 

  43. Ueda, K., Valdivia, C., Medeiros-Domingo, A., et al., Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 27, pp. 9355—9360. https://doi.org/10.1073/PNAS.0801294105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, G., Ai, T., Kim, J.J., et al., Alpha-1-syntrophin mutation and the long-QT syndrome: a disease of sodium channel disruption, Circ. Arrhythm. Electrophysiol., 2008, vol. 1, no. 3, pp. 193—201. https://doi.org/10.1161/CIRCEP.108.769224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng, J., Van Norstrand, D.W., Medeiros-Domingo, A., et al., LQTS-associated mutation A257G in α1-syntrophin interacts with the intragenic variant P74L to modify its biophysical phenotype, Cardiogenetics, 2011, vol. 1, no. 1. e13. https://doi.org/10.4081/CARDIOGENETICS.2011.E13

    Article  Google Scholar 

  46. Minetti, C., Sotgia, F., Bruno, C., et al., Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy, Nat. Genet., 1998, vol. 18, no. 4, pp. 365—368. https://doi.org/10.1038/NG0498-365

    Article  CAS  PubMed  Google Scholar 

  47. Parton, R.G., Caveolae and caveolins, Curr. Opin. Cell Biol., 1996, vol. 8, no. 4, pp. 542—548. https://doi.org/10.1016/S0955-0674(96)80033-0

    Article  CAS  PubMed  Google Scholar 

  48. Echarri, A. and Del Pozo, M.A., Caveolae—mechanosensitive membrane invaginations linked to actin filaments, J. Cell Sci., 2015, vol. 128, no. 15, pp. 2747—2758. https://doi.org/10.1242/JCS.153940

    Article  CAS  PubMed  Google Scholar 

  49. Gazzerro, E., Sotgia, F., Bruno, C., et al., Caveolinopathies: from the biology of caveolin-3 to human diseases, Eur. J. Hum. Genet., 2010, vol. 18, no. 2, p. 137. https://doi.org/10.1038/EJHG.2009.103

    Article  CAS  PubMed  Google Scholar 

  50. Vatta, M., Ackerman, M.J., Ye, B., et al., Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome, Circulation, 2006, vol. 114, no. 20, pp. 2104—2112. https://doi.org/10.1161/CIRCULATIONAHA.106.635268

    Article  CAS  PubMed  Google Scholar 

  51. Cronk, L.B., Ye, B., Kaku, T., et al., Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3, Heart Rhythm, 2007, vol. 4, no. 2, pp. 161—166. https://doi.org/10.1016/J.HRTHM.2006.11.030

    Article  PubMed  Google Scholar 

  52. Tsien, R.W., Ellinor, P.T., and Horne, W.A., Molecular diversity of voltage-dependent Ca2+ channels, Trends Pharmacol. Sci., 1991, vol. 12, no. 9, pp. 349—354. https://doi.org/10.1016/0165-6147(91)90595-J

    Article  CAS  PubMed  Google Scholar 

  53. Perez-Reyes, E., Wei, X., Castellano, A., et al., Molecular diversity of L-type calcium channels: evidence for alternative splicing of the transcripts of three non-allelic genes, J. Biol. Chem., 1990, vol. 265, no. 33, pp. 20430—20436. https://doi.org/10.1016/S0021-9258(17)30522-7

    Article  CAS  PubMed  Google Scholar 

  54. Schultz, D., Mikala, G., Yatani, A., et al., Cloning, chromosomal localization, and functional expression of the alpha 1 subunit of the L-type voltage-dependent calcium channel from normal human heart, Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, no. 13, pp. 6228—6232. https://doi.org/10.1073/PNAS.90.13.6228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Soldatov, N.M., Genomic structure of human L-type Ca2+ channel, Genomics, 1994, vol. 22, no. 1, pp. 77—87. https://doi.org/10.1006/GENO.1994.1347

    Article  CAS  PubMed  Google Scholar 

  56. Antzelevitch, C., Genetic basis of Brugada syndrome, Heart Rhythm, 2007, vol. 4, no. 6, p. 756. https://doi.org/10.1016/J.HRTHM.2007.03.015

    Article  PubMed  PubMed Central  Google Scholar 

  57. Boczek, N.J., Best, J.M., Tester, D.J., et al., Exome sequencing and systems biology converge to identify novel mutations in the L-type calcium channel, CACNA1C, linked to autosomal dominant long QT syndrome, Circ. Cardiovasc. Genet., 2013, vol. 6, no. 3, pp. 279—289. https://doi.org/10.1161/CIRCGENETICS.113.000138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rhyner, J.A., Ottiger, M., Wicki, R., et al., Structure of the human CALM1 calmodulin gene and identification of two CALM1-related pseudogenes CALM1P1 and CALM1P2, Eur. J. Biochem., 1994, vol. 225, no. 1, pp. 71—82. https://doi.org/10.1111/J.1432-1033.1994.00071.X

    Article  CAS  PubMed  Google Scholar 

  59. Boczek, N.J., Gomez-Hurtado, N., Ye, D., et al., Spectrum and prevalence of CALM1-, CALM2-, and CALM3-encoded calmodulin variants in long QT syndrome and functional characterization of a novel long QT syndrome-associated calmodulin missense variant, E141G, Circ. Cardiovasc. Genet., 2016, vol. 9, no. 2, pp. 136—146. https://doi.org/10.1161/CIRCGENETICS.115.001323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chin, D., Winkler, K.E., and Means, A.R., Characterization of substrate phosphorylation and use of calmodulin mutants to address implications from the enzyme crystal structure of calmodulin-dependent protein kinase I, J. Biol. Chem., 1997, vol. 272, no. 50, pp. 31235—31240. https://doi.org/10.1074/JBC.272.50.31235

    Article  CAS  PubMed  Google Scholar 

  61. Junge, H.J., Rhee, J.S., Jahn, O., et al., Calmodulin and Munc13 form a Ca2+ sensor/effector complex that controls short-term synaptic plasticity, Cell, 2004, vol. 118, no. 3, pp. 389—401. https://doi.org/10.1016/J.CELL.2004.06.029

    Article  CAS  PubMed  Google Scholar 

  62. Crotti, L., Spazzolini, C., Tester, D.J., et al., Calmodulin mutations and life-threatening cardiac arrhythmias: insights from the International Calmodulinopathy Registry, Eur. Heart J., 2019, vol. 40, no. 35, pp. 2964—2975. https://doi.org/10.1093/EURHEARTJ/EHZ311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Marsman, R.F., Barc, J., Beekman, L., et al., A mutation in CALM1 encoding calmodulin in familial idiopathic ventricular fibrillation in childhood and adolescence, J. Am. Coll. Cardiol., 2014, vol. 63, no. 3, pp. 259—266. https://doi.org/10.1016/J.JACC.2013.07.091

    Article  CAS  PubMed  Google Scholar 

  64. Mohler, P.J., Schott, J.J., Gramolini, A.O., et al., Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death, Nature, 2003, vol. 421, no. 6923, pp. 634—639. https://doi.org/10.1038/NATURE01335

    Article  CAS  PubMed  Google Scholar 

  65. Mohler, P.J., Splawski, I., Napolitano, C., et al., A cardiac arrhythmia syndrome caused by loss of ankyrin-B function, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 24, pp. 9137—9142. https://doi.org/10.1073/PNAS.0402546101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mohler, P.J., Le Scouarnec, S., Denjoy, I., et al., Defining the cellular phenotype of “ankyrin-B syndrome” variants: human ANK2 variants associated with clinical phenotypes display a spectrum of activities in cardiomyocytes, Circulation, 2007, vol. 115, no. 4, pp. 432—441. https://doi.org/10.1161/CIRCULATIONAHA.106.656512

    Article  PubMed  Google Scholar 

  67. Westenskow, P., Splawski, I., Timothy, K.W., et al., Compound mutations: a common cause of severe long-QT syndrome, Circulation, 2004, vol. 109, no. 15, pp. 1834—1841. https://doi.org/10.1161/01.CIR.0000125524.34234.13

    Article  PubMed  Google Scholar 

  68. Adler, A., Novelli, V., Amin, A.S., et al., An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome, Circulation, 2020, vol. 141, no. 6, p. 418. https://doi.org/10.1161/CIRCULATIONAHA.119.043132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lebedev, D.S., Mikhailov, E.N., Neminushchii, N.M., et al., Ventricular arrhythmias: ventricular tachycardias and sudden cardiac death. Clinical guidelines, Ross. Kardiol. Zh., 2020, vol. 26, no. 7. https://doi.org/10.15829/1560-4071-2021-4600

  70. Mazzanti, A., Maragna, R., Faragli, A., et al., Gene-specific therapy with mexiletine reduces arrhythmic events in patients with long QT syndrome type 3, J. Am. Coll. Cardiol., 2016, vol. 67, no. 9, pp. 1053—1058. https://doi.org/10.1016/J.JACC.2015.12.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bos, J.M., Crotti, L., Rohatgi, R.K., et al., Mexiletine shortens the QT interval in patients with potassium channel-mediated type 2 long QT syndrome, Circ. Arrhythm. Electrophysiol., 2019, vol. 12, no. 5. https://doi.org/10.1161/CIRCEP.118.007280

  72. Etheridge, S.P., Compton, S.J., Tristani-Firouzi, M., et al., A new oral therapy for long QT syndrome: long-term oral potassium improves repolarization in patients with HERG mutations, J. Am. Coll. Cardiol., 2003, vol. 42, no. 10, pp. 1777—1782. https://doi.org/10.1016/J.JACC.2003.07.006

    Article  CAS  PubMed  Google Scholar 

  73. Crotti, L., Celano, G., Dagradi, F., et al., Congenital long QT syndrome, Orphanet J. Rare Dis., 2008, vol. 3, no. 1, pp. 1—16. https://doi.org/10.1186/1750-1172-3-18/FIGURES/6

    Article  Google Scholar 

  74. Priori, S.G., Wilde, A.A., Horie, M., et al., HRS/EHRA/ APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes, J. Arrhythmia, 2014, vol. 30, no. 1, pp. 1—28. https://doi.org/10.1016/J.JOA.2013.07.002

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Ministry of Science and Higher Education (Federal Scientific and Technical Program for the Development of Genetic Technologies for 2019–2027, contract no. 075-15-2021-1061, RF 193021X0029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Postrigan.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Postrigan, A.E., Babushkina, N.P., Svintsova, L.I. et al. Clinical and Genetic Characteristics of Congenital Long QT Syndrome. Russ J Genet 58, 1216–1227 (2022). https://doi.org/10.1134/S1022795422100064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422100064

Keywords:

Navigation