Skip to main content

Congenital Long QT Syndrome

  • Chapter
  • First Online:
Electrical Diseases of the Heart

Abstract

With an incidence as high as 1 in 2,000–2,500 live births, long QT syndrome (LQTS) is often characterized clinically by prolongation of the heart rate corrected QT interval (QTc) on a 12-lead surface electrocardiogram (ECG) and is associated with syncope, seizures, and sudden cardiac death due to ventricular arrhythmias usually following a precipitating event such as exertion, extreme emotion, or auditory stimulation. The phenotypic expression of LQTS varies profoundly from asymptomatic longevity to premature sudden cardiac death despite medical therapy. Therefore the clinical/genetic diagnostic evaluation and risk-stratification are highly important issues in the clinical management of LQTS. This chapter will review the historical background, epidemiology and prevalence, molecular genetics, and clinical presentations of LQTS, explore unique genotype – phenotype relationships that help define the various forms of the disorder, and provide a detailed outline for the diagnostic evaluation and clinical management of LQTS patients including current treatment strategies and recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moss AJ, Schwartz PJ. 25th anniversary of the International Long-QT Syndrome Registry: an ongoing quest to uncover the secrets of long-QT syndrome. Circulation. 2005;111(9):1199–201.

    Article  PubMed  Google Scholar 

  2. Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the QT interval, and sudden death. Am Heart J. 1957;54:59–68.

    Article  PubMed  CAS  Google Scholar 

  3. Romano C, Gemme G, Pongiglione R. Aritmie cardiache rare dell‘eta’ pediatrica. II. Accessi sincopali per fibrillazione ventricolare parossistica. Clin Peditr (Bologna). 1963;45:656–83.

    CAS  Google Scholar 

  4. Ward OC. A new familial cardiac syndrome in children. J Ir Med Assoc. 1964;54:103–6.

    PubMed  CAS  Google Scholar 

  5. Ackerman MJ. The long QT syndrome: ion channel diseases of the heart. Mayo Clin Proc. 1998;73(3):250–69.

    Article  PubMed  CAS  Google Scholar 

  6. Vincent GM. The molecular genetics of the long QT syndrome: genes causing fainting and sudden death. Annu Rev Med. 1998;49:263–74.

    Article  PubMed  CAS  Google Scholar 

  7. Schwartz PJ, Stramba-Badiale M, Crotti L, et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009;120(18):1761–7.

    Article  PubMed  Google Scholar 

  8. Tester DJ, Ackerman MJ. Postmortem long QT syndrome genetic testing for sudden unexplained death in the young. J Am Coll Cardiol. 2007;49(2):240–6.

    Article  PubMed  Google Scholar 

  9. Goldenberg I, Moss AJ, Zareba W, et al. Clinical course and risk stratification of patients affected with the Jervell and Lange-Nielsen syndrome. J Cardiovasc Electrophysiol. 2006;17:1161–8.

    Article  PubMed  Google Scholar 

  10. Yang Y, Yang Y, Liang B, et al. Identification of a Kir3.4 mutation in congenital long QT syndrome. Am J Hum Genet. 2010;86(6):872–80.

    Article  PubMed  CAS  Google Scholar 

  11. Moss AJ, Long QT. Syndromes. Curr Treat Options Cardiovasc Med. 2000;2(4):317–22.

    Article  PubMed  Google Scholar 

  12. Schwartz PJ. Clinical applicability of molecular biology: the case of the long QT syndrome. Curr Control Trials Cardiovasc Med. 2000;1(2):88–91.

    Article  PubMed  CAS  Google Scholar 

  13. Moss AJ, Schwartz PJ, Crampton RS, et al. The long QT syndrome. Prospective longitudinal study of 328 families. Circulation. 1991;84(3):1136–44.

    Article  PubMed  CAS  Google Scholar 

  14. Hobbs JB, Peterson DR, Moss AJ, et al. Risk of aborted cardiac arrest or sudden cardiac death during adolescence in the long-QT syndrome. JAMA. 2006;296(10):1249–54.

    Article  PubMed  CAS  Google Scholar 

  15. Lehmann MH, Timothy KW, Frankovich D, et al. Age-gender influence on the rate-corrected QT interval and the QT-heart rate relation in families with genotypically characterized long QT syndrome. J Am Coll Cardiol. 1997;29(1):93–9.

    Article  PubMed  CAS  Google Scholar 

  16. Locati EH, Zareba W, Moss AJ, et al. Age- and sex-related differences in clinical manifestations in patients with congenital long-QT syndrome: findings from the International LQTS Registry. Circulation. 1998;97(22):2237–44.

    Article  PubMed  CAS  Google Scholar 

  17. Rashba EJ, Zareba W, Moss AJ, et al. Influence of pregnancy on the risk for cardiac events in patients with hereditary long QT syndrome. LQTS Investigators. Circulation. 1998;97(5):451–6.

    Article  PubMed  CAS  Google Scholar 

  18. Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 2001;103(1):89–95.

    Article  PubMed  CAS  Google Scholar 

  19. Tester DJ, Ackerman MJ. Genetics of cardiac arrhythmias. Braunwald’s heart disease: a textbook of cardiovascular medicine. Philadelphia: Elsevier/Saunders; 2012. p. 81–90.

    Book  Google Scholar 

  20. Moss AJ, Robinson JL, Gessman L, et al. Comparison of clinical and genetic variables of cardiac events associated with loud noise versus swimming among subjects with the long QT syndrome. Am J Cardiol. 1999;84(8):876–9.

    Article  PubMed  CAS  Google Scholar 

  21. Ackerman MJ, Tester DJ, Porter CJ. Swimming, a gene-specific arrhythmogenic trigger for inherited long QT syndrome. Mayo Clin Proc. 1999;74(11):1088–94.

    Article  PubMed  CAS  Google Scholar 

  22. Moss AJ, Zareba W, Benhorin J, et al. ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation. 1995;92(10):2929–34.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang L, Timothy KW, Vincent GM, et al. Spectrum of ST-T-wave patterns and repolarization parameters in congenital long-QT syndrome: ECG findings identify genotypes. Circulation. 2000;102(23):2849–55.

    Article  PubMed  CAS  Google Scholar 

  24. Wilde AA, Jongbloed RJ, Doevendans PA, et al. Auditory stimuli as a trigger for arrhythmic events differentiate HERG- related (LQTS2) patients from KVLQT1-related patients (LQTS1). J Am Coll Cardiol. 1999;33(2):327–32.

    Article  PubMed  CAS  Google Scholar 

  25. Khositseth A, Tester DJ, Will ML, Bell CM, Ackerman MJ. Identification of a common genetic substrate underlying postpartum cardiac events in congenital long QT syndrome. Heart Rhythm. 2004;1:60–4.

    Article  PubMed  Google Scholar 

  26. Heradien MJ, Goosen A, Crotti L, et al. Does pregnancy increase cardiac risk for LQT1 patients with the KCNQ1-A341V mutation? J Am Coll Cardiol. 2006;48:1410–5.

    Article  PubMed  CAS  Google Scholar 

  27. Lehmann MH, Suzuki F, Fromm BS, et al. T wave “humps” as a potential electrocardiographic marker of the long QT syndrome. J Am Coll Cardiol. 1994;24(3):746–54.

    Article  PubMed  CAS  Google Scholar 

  28. Vincent GM, Timothy KW, Leppert M, Keating M. The spectrum of symptoms and QT intervals in carriers of the gene for the long-QT syndrome. N Engl J Med. 1992;327(12):846–52.

    Article  PubMed  CAS  Google Scholar 

  29. Dumaine R, Wang Q, Keating MT, et al. Multiple mechanisms of Na+ channel-linked long-QT syndrome. Circ Res. 1996;78(5):916–24.

    Article  PubMed  CAS  Google Scholar 

  30. Zareba W, Moss AJ, Schwartz PJ, et al. Influence of genotype on the clinical course of the long-QT syndrome. International long-QT syndrome Registry Research Group. N Engl J Med. 1998;339(14):960–5.

    Article  PubMed  CAS  Google Scholar 

  31. Schwartz PJ. Idiopathic long QT syndrome: progress and questions. Am Heart J. 1985;109(2):399–411.

    Article  PubMed  CAS  Google Scholar 

  32. Schwartz PJ, Moss AJ, Vincent GM, Crampton RS. Diagnostic criteria for the long QT syndrome. An update. Circulation. 1993;88(2):782–4.

    Article  PubMed  CAS  Google Scholar 

  33. Schwartz PJ, Crotti L. QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation. 2011;124(20):2181–4.

    Article  PubMed  Google Scholar 

  34. Schwartz PJ. The congenital long QT syndromes from genotype to phenotype: clinical implications. J Intern Med. 2006;259(1):39–47.

    Article  PubMed  CAS  Google Scholar 

  35. Sy RW, van der Werf C, Chattha IS, et al. Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands. Circulation. 2011;124(20):2187–94.

    Article  PubMed  Google Scholar 

  36. Viskin S, Postema PG, Bhuiyan ZA, et al. The response of the QT interval to the brief ­tachycardia provoked by standing: a bedside test for diagnosing long QT syndrome. J Am Coll Cardiol. 2010;55(18):1955–61.

    Article  PubMed  Google Scholar 

  37. Bazett HC. An analysis of the time-relations of electrocardiograms. Heart. 1920;7:353–70.

    Google Scholar 

  38. Garson Jr A, Dick 2nd M, Fournier A, et al. The long QT syndrome in children. An international study of 287 patients. Circulation. 1993;87(6):1866–72.

    Article  PubMed  Google Scholar 

  39. Garson Jr A, Kertesz NJ, Towbin JA. Improved electrocardiographic identification of the long QT syndrome. J Am Coll Cardiol. 2001;37(Suppl A):467A.

    Google Scholar 

  40. Allan WC, Timothy K, Vincent GM, Palomaki GE, Neveux LM, Haddow JE. Long QT syndrome in children: the value of rate corrected QT interval and DNA analysis as screening tests in the general population. J Med Screen. 2001;8(4):173–7.

    Article  PubMed  CAS  Google Scholar 

  41. Viskin S, Rosovski U, Sands AJ, et al. Inaccurate electrocardiographic interpretation of long QT: the majority of physicians cannot recognize a long QT when they see one. Heart Rhythm. 2005;2(6):569–74.

    Article  PubMed  Google Scholar 

  42. Moss AJ, Schwartz PJ, Crampton RS, Locati E, Carleen E. The long QT syndrome: a prospective international study. Circulation. 1985;71(1):17–21.

    Article  PubMed  CAS  Google Scholar 

  43. Tester DJ, Will ML, Haglund CM, Ackerman MJ. Effect of clinical phenotype on yield of long QT syndrome genetic testing. J Am Coll Cardiol. 2006;47(4):764–8.

    Article  PubMed  Google Scholar 

  44. Vincent GM, Timothy K, Fox J, Zhang L. The inherited long QT syndrome: from ion channel to bedside. Cardiol Rev. 1999;7(1):44–55.

    Article  PubMed  CAS  Google Scholar 

  45. Malfatto G, Beria G, Sala S, Bonazzi O, Schwartz PJ. Quantitative analysis of T wave abnormalities and their prognostic implications in the idiopathic long QT syndrome. J Am Coll Cardiol. 1994;23(2):296–301.

    Article  PubMed  CAS  Google Scholar 

  46. Lupoglazoff JM, Denjoy I, Berthet M, et al. Notched T waves on Holter recordings enhance detection of patients with LQt2 (HERG) mutations. Circulation. 2001;103(8):1095–101.

    Article  PubMed  CAS  Google Scholar 

  47. Khositseth A, Hejlik J, Shen WK, Ackerman MJ. Epinephrine-induced T-wave notching in congenital long QT syndrome. Heart Rhythm. 2005;2:141–6.

    Article  PubMed  Google Scholar 

  48. Schwartz PJ, Malliani A. Electrical alternation of the T-wave: clinical and experimental evidence of its relationship with the sympathetic nervous system and with the long Q-T syndrome. Am Heart J. 1975;89(1):45–50.

    Article  PubMed  CAS  Google Scholar 

  49. Zareba W, Moss AJ, le Cessie S, Hall WJ. T wave alternans in idiopathic long QT syndrome. J Am Coll Cardiol. 1994;23(7):1541–6.

    Article  PubMed  CAS  Google Scholar 

  50. Napolitano C, Priori SG, Schwartz PJ. Significance of QT dispersion in the long QT syndrome. Prog Cardiovasc Dis. 2000;42(5):345–50.

    Article  PubMed  CAS  Google Scholar 

  51. Day CP, McComb JM, Campbell RW. QT dispersion: an indication of arrhythmia risk in patients with long QT intervals. Br Heart J. 1990;63(6):342–4.

    Article  PubMed  CAS  Google Scholar 

  52. Priori SG, Napolitano C, Diehl L, Schwartz PJ. Dispersion of the QT interval. A marker of therapeutic efficacy in the idiopathic long QT syndrome. Circulation. 1994;89(4):1681–9.

    Article  PubMed  CAS  Google Scholar 

  53. Moennig G, Schulze-Bahr E, Wedekind H, et al. Clinical value of electrocardiographic parameters in genotyped individuals with familial long QT syndrome. Pacing Clin Electrophysiol. 2001;24(4 Pt 1):406–15.

    Article  PubMed  CAS  Google Scholar 

  54. Vincent GM, Jaiswal D, Timothy KW. Effects of exercise on heart rate, QT, QTc and QT/QS2 in the Romano-Ward inherited long QT syndrome. Am J Cardiol. 1991;68(5):498–503.

    Article  PubMed  CAS  Google Scholar 

  55. Swan H, Toivonen L, Viitasalo M. Rate adaptation of QT intervals during and after exercise in children with congenital long QT syndrome. Eur Heart J. 1998;19(3):508–13.

    Article  PubMed  CAS  Google Scholar 

  56. Schwartz PJ, Priori SG, Locati EH, et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation. 1995;92(12):3381–6.

    Article  PubMed  CAS  Google Scholar 

  57. Swan H, Viitasalo M, Piippo K, Laitinen P, Kontula K, Toivonen L. Sinus node function and ventricular repolarization during exercise stress test in long QT syndrome patients with KvLQT1 and HERG potassium channel defects. J Am Coll Cardiol. 1999;34(3):823–9.

    Article  PubMed  CAS  Google Scholar 

  58. Horner JM, Horner MM, Ackerman MJ. The diagnostic utility of recovery phase QTc during treadmill exercise stress testing in the evaluation of long QT syndrome. Heart Rhythm. 2011;8(11):1698–704.

    Article  PubMed  Google Scholar 

  59. Horner JM, Ackerman MJ. Ventricular ectopy during treadmill exercise stress testing in the evaluation of long QT syndrome. Heart Rhythm. 2008;5(12):1690–4.

    Article  PubMed  Google Scholar 

  60. Ackerman MJ, Khositseth A, Tester DJ, Hejlik J, Shen WK, Porter CJ. Epinephrine-induced QT interval prolongation: a gene-specific paradoxical response in congenital long QT syndrome. Mayo Clin Proc. 2002;77(5):413–21.

    PubMed  CAS  Google Scholar 

  61. Shimizu W, Noda T, Takaki H, et al. Epinephrine unmasks latent mutation carriers with LQT1 form of congenital long-QT syndrome. J Am Coll Cardiol. 2003;41(4):633–42.

    Article  PubMed  CAS  Google Scholar 

  62. Vyas H, Hejlik J, Ackerman MJ. Epinephrine QT stress testing in the evaluation of congenital long-QT syndrome: diagnostic accuracy of the paradoxical QT response. Circulation. 2006;113(11):1385–92.

    Article  PubMed  CAS  Google Scholar 

  63. Nador F, Beria G, De Ferrari GM, et al. Unsuspected echocardiographic abnormality in the long QT syndrome. Diagnostic, prognostic, and pathogenetic implications. Circulation. 1991;84(4):1530–42.

    Article  PubMed  CAS  Google Scholar 

  64. De Ferrari GM, Nador F, Beria G, Sala S, Lotto A, Schwartz PJ. Effect of calcium channel block on the wall motion abnormality of the idiopathic long QT syndrome. Circulation. 1994;89(5):2126–32.

    Article  PubMed  Google Scholar 

  65. De Ferrari GM, Schwartz PJ. Long QT syndrome, a purely electrical disease? Not anymore. Eur Heart J. 2009;30(3):253–5.

    Article  PubMed  Google Scholar 

  66. Nakayama K, Yamanari H, Otsuka F, et al. Dispersion of regional wall motion abnormality in patients with long QT syndrome. Heart. 1998;80(3):245–50.

    PubMed  CAS  Google Scholar 

  67. Savoye C, Klug D, Denjoy I, et al. Tissue Doppler echocardiography in patients with long QT syndrome. Eur J Echocardiogr. 2003;4(3):209–13.

    Article  PubMed  CAS  Google Scholar 

  68. Haugaa KH, Edvardsen T, Leren TP, Gran JM, Smiseth OA, Amlie JP. Left ventricular mechanical dispersion by tissue Doppler imaging: a novel approach for identifying high-risk individuals with long QT syndrome. Eur Heart J. 2009;30(3):330–7.

    Article  PubMed  Google Scholar 

  69. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995;80(5):795–803.

    Article  PubMed  CAS  Google Scholar 

  70. Wang Q, Shen J, Splawski I, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995;80(5):805–11.

    Article  PubMed  CAS  Google Scholar 

  71. Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8(8):1308–39.

    Article  PubMed  Google Scholar 

  72. Gollob MH, Blier L, Brugada R, et al. Recommendations for the use of genetic testing in the clinical evaluation of inherited cardiac arrhythmias associated with sudden cardiac death: Canadian Cardiovascular Society/Canadian Heart Rhythm Society joint position paper. Can J Cardiol. 2011;27(2):232–45.

    Article  PubMed  Google Scholar 

  73. Tester DJ, Will ML, Haglund CM, Ackerman MJ. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm. 2005;2:507–17.

    Article  PubMed  Google Scholar 

  74. Napolitano C, Priori SG, Schwartz PJ, et al. Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice. JAMA. 2005;294(23):2975–80.

    Article  PubMed  CAS  Google Scholar 

  75. Splawski I, Shen J, Timothy KW, et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation. 2000;102(10):1178–85.

    Article  PubMed  CAS  Google Scholar 

  76. Westenskow P, Splawski I, Timothy KW, Keating MT, Sanguinetti MC. Compound mutations: a common cause of severe long-QT syndrome. Circulation. 2004;109:1834–41.

    Article  PubMed  Google Scholar 

  77. Schwartz PJ, Priori SG, Napolitano C. How really rare are rare diseases?: the intriguing case of independent compound mutations in the long QT syndrome. J Cardiovasc Electrophysiol. 2003;14(10):1120–1.

    Article  PubMed  Google Scholar 

  78. Ackerman MJ, Tester DJ, Jones G, Will MK, Burrow CR, Curran M. Ethnic differences in cardiac potassium channel variants: implications for genetic susceptibility to sudden cardiac death and genetic testing for congenital long QT syndrome. Mayo Clin Proc. 2003;78:1479–87.

    Article  PubMed  CAS  Google Scholar 

  79. Ackerman MJ, Splawski I, Makielski JC, et al. Spectrum and prevalence of cardiac sodium channel variants among Black, White, Asian, and Hispanic individuals: implications for arrhythmogenic susceptibility and Brugada/Long QT Syndrome genetic testing. Heart Rhythm. 2004;1:600–7.

    Article  PubMed  Google Scholar 

  80. Kapa S, Tester DJ, Salisbury BA, et al. Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants. Circulation. 2009;120(18):1752–60.

    Article  PubMed  CAS  Google Scholar 

  81. Landstrom AP, Ackerman MJ. The Achilles’ heel of cardiovascular genetic testing: distinguishing pathogenic mutations from background genetic noise. Clin Pharmacol Ther. 2011;90(4):496–9.

    Article  PubMed  CAS  Google Scholar 

  82. Tester DJ, Ackerman MJ. Genetic testing. In: Gussak I, Antzelevitch C, editors. Electrical diseases of the heart: genetics, mechanisms, treatment, prevention. London: Springer; 2008. p. 444–58.

    Chapter  Google Scholar 

  83. Kapa S, Tester DJ, Salisbury BA, Wilde AA, Ackerman MJ. Distinguishing long QT syndrome-causing mutations from “background” genetic noise. Heart Rhythm. 2008;5(5):S76.

    Google Scholar 

  84. Spazzolini C, Mullally J, Moss AJ, et al. Clinical implications for patients with long QT syndrome who experience a cardiac event during infancy. J Am Coll Cardiol. 2009;54(9):832–7.

    Article  PubMed  Google Scholar 

  85. Priori SG, Schwartz PJ, Napolitano C, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003;348:1866–74.

    Article  PubMed  Google Scholar 

  86. Schwartz PJ, Spazzolini C, Crotti L, et al. The Jervell and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome. Circulation. 2006;113(6):783–90.

    Article  PubMed  Google Scholar 

  87. Marks ML, Trippel DL, Keating MT. Long QT syndrome associated with syndactyly identified in females. Am J Cardiol. 1995;76(10):744–5.

    Article  PubMed  CAS  Google Scholar 

  88. Splawski I, Timothy KW, Sharpe LM, et al. Cav1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119:19–31.

    Article  PubMed  CAS  Google Scholar 

  89. Moss AJ, Zareba W, Kaufman ES, et al. Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel. Circulation. 2002;105(7):794–9.

    Article  PubMed  CAS  Google Scholar 

  90. Jons C, Moss AJ, Lopes CM, et al. Mutations in conserved amino acids in the KCNQ1 channel and risk of cardiac events in type-1 long-QT syndrome. J Cardiovasc Electrophysiol. 2009;20(8):859–65.

    Article  PubMed  Google Scholar 

  91. Shimizu W, Horie M, Ohno S, et al. Mutation site-specific differences in arrhythmic risk and sensitivity to sympathetic stimulation in the LQT1 form of congenital long QT syndrome: multicenter study in Japan. J Am Coll Cardiol. 2004;44(1):117–25.

    Article  PubMed  CAS  Google Scholar 

  92. Moss AJ, Shimizu W, Wilde AAM, et al. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation. 2007;115(19):2481–9.

    Article  PubMed  CAS  Google Scholar 

  93. Nagaoka I, Shimizu W, Itoh H, et al. Mutation site dependent variability of cardiac events in Japanese LQT2 form of congenital long-QT syndrome. Circ J. 2008;72(5):694–9.

    Article  PubMed  Google Scholar 

  94. Shimizu W, Moss A, Wilde A, et al. Genotype-phenotype aspects of type-2 long-QT syndrome. J Am Coll Cardiol. 2009;54(22):2052–62.

    Article  PubMed  CAS  Google Scholar 

  95. Crotti L, Spazzolini C, Schwartz PJ, et al. The common long-QT syndrome mutation KCNQ1/A341V causes unusually severe clinical manifestations in patients with different ethnic backgrounds: toward a mutation-specific risk stratification. Circulation. 2007;116(21):2366–75.

    Article  PubMed  CAS  Google Scholar 

  96. Amin AS, Giudicessi JR, Tijsen AJ, et al. Variants in the 3′untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner. Eur Heart J. 2012;33(6):714–23.

    Article  PubMed  CAS  Google Scholar 

  97. Moss AJ, Zareba W, Hall WJ, et al. Effectiveness and limitations of beta-blocker therapy in ­congenital long-QT syndrome. Circulation. 2000;101(6):616–23.

    Article  PubMed  CAS  Google Scholar 

  98. Atiga WL, Calkins H, Lawrence JH, Tomaselli GF, Smith JM, Berger RD. Beat-to-beat repolarization lability identifies patients at risk for sudden cardiac death. J Cardiovasc Electrophysiol. 1998;9(9):899–908.

    Article  PubMed  CAS  Google Scholar 

  99. Zareba W. New electrocardiographic indices of risk stratification. J Electrocardiol. 2001;34:332.

    Article  Google Scholar 

  100. Steinbigler P, Haberl R, Nespithal K, Spiegl A, Schmucking I, Steinbeck G. T wave spectral variance: a new method to determine inhomogeneous repolarization by T wave beat-to-beat variability in patients prone to ventricular arrhythmias. J Electrocardiol. 1998;30(Suppl):137–44.

    Article  PubMed  Google Scholar 

  101. Priori SG, Aliot E, Blomstrom-Lundqvist C, et al. Task force on sudden cardiac death of the European Society of Cardiology. Eur Heart J. 2001;22(16):1374–450.

    Article  PubMed  CAS  Google Scholar 

  102. Bhandari AK, Shapiro WA, Morady F, Shen EN, Mason J, Scheinman MM. Electrophysiologic testing in patients with the long QT syndrome. Circulation. 1985;71(1):63–71.

    Article  PubMed  CAS  Google Scholar 

  103. Nemec J, Ackerman MJ, Tester D, Hejlik J, Shen WK. Catecholamine provoked microvoltage T wave alternans in genotyped long QT syndrome. Pacing & Clinical Electrophysiology. 2003;26(8):1660–7.

    Google Scholar 

  104. Nemec J, Hejlik JB, Shen WK, Ackerman MJ. Catecholamine-induced T-wave lability in congenital long QT syndrome: a novel phenomenon associated with syncope and cardiac arrest. Mayo Clin Proc. 2003;78:40–50.

    Google Scholar 

  105. Priori SG, Maugeri FS, Schwartz PJ. The risk of sudden death as first cardiac event in asymptomatic patients with the long QT syndrome (abstract). Circulation. 1998;98(Suppl I):777.

    Google Scholar 

  106. Schwartz PJ. The long QT syndrome. Curr Probl Cardiol. 1997;22(6):297–351.

    Article  PubMed  CAS  Google Scholar 

  107. Chatrath R, Bell CM, Ackerman MJ. Beta-blocker therapy failures in symptomatic probands with genotyped long-QT syndrome. Pediatr Cardiol. 2004;25(5):459–65.

    Article  PubMed  CAS  Google Scholar 

  108. Viskin S, Fish R, Zeltser D, et al. Arrhythmias in the congenital long QT syndrome: how often is torsade de pointes pause dependent? Heart. 2000;83(6):661–6.

    Article  PubMed  CAS  Google Scholar 

  109. Eldar M, Griffin JC, Van Hare GF, et al. Combined use of beta-adrenergic blocking agents and long-term cardiac pacing for patients with the long QT syndrome. J Am Coll Cardiol. 1992;20(4):830–7.

    Article  PubMed  CAS  Google Scholar 

  110. Dorostkar PC, Eldar M, Belhassen B, Scheinman MM. Long-term follow-up of patients with long-QT syndrome treated with beta-blockers and continuous pacing. Circulation. 1999;100(24):2431–6.

    Article  PubMed  CAS  Google Scholar 

  111. Tan HL, Bardai A, Shimizu W, et al. Genotype-specific onset of arrhythmias in congenital long-QT syndrome: possible therapy implications. Circulation. 2006;114:2096–103.

    Article  PubMed  Google Scholar 

  112. Schwartz PJ, Spazzolini C, Crotti L. All LQT3 patients need an ICD: true or false? Heart Rhythm. 2009;6(1):113–20.

    Article  PubMed  Google Scholar 

  113. Horner JM, Kinoshita M, Webster TL, Haglund CM, Friedman PA, Ackerman MJ. Implantable cardioverter defibrillator therapy for congenital long QT syndrome: a single-center experience. Heart Rhythm. 2010;7(11):1616–22.

    Article  PubMed  Google Scholar 

  114. Schwartz PJ, Spazzolini C, Priori SG, et al. Who are the long-QT syndrome patients who receive an implantable cardioverter-defibrillator and what happens to them? Data from the European Long-QT Syndrome Implantable Cardioverter-Defibrillator (LQTS ICD) Registry. Circulation. 2010;122(13):1272–82.

    Article  PubMed  Google Scholar 

  115. Chatrath R, Porter CJ, Ackerman MJ. Role of transvenous implantable cardioverter-defibrillators in preventing sudden cardiac death in children, adolescents, and young adults. Mayo Clin Proc. 2002;77:226–31.

    Article  PubMed  Google Scholar 

  116. Zareba W, Moss AJ, Daubert JP, Hall WJ, Robinson JL, Andrews M. Implantable cardioverter defibrillator in high-risk long QT syndrome patients. J Cardiovasc Electrophysiol. 2003;14:337–41.

    Article  PubMed  Google Scholar 

  117. Monnig G, Kobe J, Loher A, et al. Implantable cardioverter-defibrillator therapy in patients with congenital long-QT syndrome: a long-term follow-up. Heart Rhythm. 2005;2(5):497–504.

    Article  PubMed  Google Scholar 

  118. Kaufman ES, McNitt S, Moss AJ, et al. Risk of death in the long QT syndrome when a sibling has died. Heart Rhythm. 2008;5(6):831–6.

    Article  PubMed  Google Scholar 

  119. Villain E, Denjoy I, Lupoglazoff JM, et al. Low incidence of cardiac events with B-blocking therapy in children with long QT syndrome. Eur Heart J. 2004;25:1405–11.

    Article  PubMed  CAS  Google Scholar 

  120. Schwartz PJ, Locati E. The idiopathic long QT syndrome: pathogenetic mechanisms and therapy. Eur Heart J. 1985;6(Suppl D):103–14.

    Article  PubMed  Google Scholar 

  121. Moss AJ, McDonald J. Unilateral cervicothoracic sympathetic ganglionectomy for the treatment of long QT interval syndrome. N Engl J Med. 1971;285(16):903–4.

    Article  PubMed  CAS  Google Scholar 

  122. Schwartz PJ, Priori SG, Cerrone M, et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation. 2004;109(15):1826–33.

    Article  PubMed  Google Scholar 

  123. Collura CA, Johnson JN, Moir C, Ackerman MJ. Left cardiac sympathetic denervation for the treatment of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia using video-assisted thoracic surgery. Heart Rhythm. 2009;6(6):752–9.

    Article  PubMed  Google Scholar 

  124. Compton SJ, Lux RL, Ramsey MR, et al. Genetically defined therapy of inherited long-QT syndrome. Correction of abnormal repolarization by potassium. Circulation. 1996;94(5):1018–22.

    Article  PubMed  CAS  Google Scholar 

  125. Etheridge SP, Compton SJ, Tristani-Firouzi M, Mason JW. A new oral therapy for long QT syndrome: long-term oral potassium improves repolarization in patients with HERG mutations. J Am Coll Cardiol. 2003;42:1777–82.

    Article  PubMed  CAS  Google Scholar 

  126. Priori SG, Napolitano C, Schwartz PJ, et al. Association of long QT syndrome loci and cardiac events among patients treated with B-blockers. JAMA. 2004;292:1341–4.

    Article  PubMed  CAS  Google Scholar 

  127. Shimizu W, Antzelevitch C. Differential effects of beta-adrenergic agonists and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome. J Am Coll Cardiol. 2000;35(3):778–86.

    Article  PubMed  CAS  Google Scholar 

  128. Shimizu W, Antzelevitch C. Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade des pointes in LQT2 and LQT3 models of the long-QT syndrome. Circulation. 1997;96(6):2038–47.

    Article  PubMed  CAS  Google Scholar 

  129. Shimizu W, Antzelevitch C. Cellular basis for the ECG features of the LQT1 form of the long-QT syndrome: effects of beta-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation. 1998;98(21):2314–22.

    Article  PubMed  CAS  Google Scholar 

  130. Moss AJ, Windle JR, Hall WJ, et al. Safety and efficacy of flecainide in subjects with Long QT-3 syndrome (DeltaKPQ mutation): a randomized, double-blind, placebo-controlled clinical trial. Ann Noninvasive Electrocardiol. 2005;10(4 Suppl):59–66.

    Article  PubMed  Google Scholar 

  131. Khan IA, Gowda RM. Novel therapeutics for treatment of long-QT syndrome and torsade de pointes. Int J Cardiol. 2004;95(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  132. Priori SG, Napolitano C, Schwartz PJ, Bloise R, Crotti L, Ronchetti E. The elusive link between LQT3 and Brugada syndrome: the role of flecainide challenge. Circulation. 2000;102:945–7.

    Article  PubMed  CAS  Google Scholar 

  133. Bankston JR, Kass RS. Molecular determinants of local anesthetic action of beta-blocking drugs: implications for therapeutic management of long QT syndrome variant 3. J Mol Cell Cardiol. 2010;48(1):246–53.

    Article  PubMed  CAS  Google Scholar 

  134. Besana AP, Wang DW, George AL, Schwartz PJ. Nadolol block of Nav1.5 does not explain its efficacy in the long QT syndrome. J Cardiovasc Pharmacol. 2012;59:249–53.

    Article  PubMed  CAS  Google Scholar 

  135. Vyas H, Johnson J, Houlihan R, Bauer BA, Ackerman MJ. Acquired long QT syndrome secondary to cesium chloride supplement. J Altern Complement Med. 2006;12(10):1011–4.

    Google Scholar 

  136. Fitzgerald PT, Ackerman MJ. Drug-induced torsades de pointes: the evolving role of pharmacogenetics. Heart Rhythm. 2005;2:S30–7.

    Article  PubMed  Google Scholar 

  137. Amin AS, Herfst LJ, Delisle BP, et al. Fever-induced QTc prolongation and ventricular arrhythmias in individuals with type 2 congenital long QT syndrome. J Clin Invest. 2008;118(7):2552–61.

    PubMed  CAS  Google Scholar 

  138. Zipes DP, Ackerman MJ, Estes III NA, Grant AO, Myerburg RJ, Van Hare G. Task force 7: arrhythmias. J Am Coll Cardiol. 2005;45:1354–63.

    Article  PubMed  Google Scholar 

  139. Pelliccia A, Fagard R, Bjornstad HH, et al. Recommendations for competitive sports participation in athletes with cardiovascular disease: a consensus document from the Study Group of Sports Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur Heart J. 2005;26(14):1422–45.

    Article  PubMed  Google Scholar 

  140. Maron BJ, Isner JM, McKenna WJ. 26th Bethesda conference: recommendations for determining eligibility for competition in athletes with cardiovascular abnormalities. Task Force 3: hypertrophic cardiomyopathy, myocarditis and other myopericardial diseases and mitral valve prolapse. J Am Coll Cardiol. 1994;24(4):880–5.

    Article  PubMed  CAS  Google Scholar 

  141. Taggart NW, Haglund CM, Ackerman MJ. AB32-5: diagnostic miscues in congenital long QT syndrome. Heart Rhythm. 2006;3(5 Suppl 1):S67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Ackerman MD, PhD, FACC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Tester, D.J., Schwartz, P.J., Ackerman, M.J. (2013). Congenital Long QT Syndrome. In: Gussak, I., Antzelevitch, C. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-4471-4881-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4881-4_27

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4880-7

  • Online ISBN: 978-1-4471-4881-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics