Skip to main content
Log in

Non-Neutral Cytochrome b Variability in the Saker Falco cherrug Grey, 1834 and Gyrfalcon Falco rusticolus L.

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Mitochondrial DNA variability affects the characteristics of cell metabolism and serves as marker of evolutionary processes. The mitochondrial cytochrome b gene sequences of saker and gyrfalcon were examined. Five amino acid substitutions were identified, and for two of these, changes in amino acid physicochemical properties were revealed. Suggestions on the phylogenetic origin and functional influence of the detected amino acid substitutions were made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Venditti, C. and Pagel, M., Speciation as an active force in promoting genetic evolution, Trends Ecol. Evol., 2010, vol. 25, no. 1, pp. 14—20. https://doi.org/10.1016/j.tree.2009.06.010

    Google Scholar 

  2. Scott, G.R., Schulte, P.M., Egginton, S., et al., Molecular evolution of cytochrome c oxidase underlies high-altitude adaptation in the bar-headed goose, Mol. Biol. Evol., 2011, vol. 28, no. 1, pp. 351—363. https://doi.org/10.1093/molbev/msq205

    Google Scholar 

  3. Morales, H.E., Pavlova, A., Joseph, L., and Sunnucks, P., Positive and purifying selection in mitochondrial genomes of a bird with mitonuclear discordance, Mol. Ecol., 2015, vol. 24, no. 11, pp. 2820—2837. https://doi.org/10.1111/mec.13203

    Google Scholar 

  4. Lamb, A.M., Gan, H.M., Greening, C., et al., Climate-driven mitochondrial selection: a test in Australian songbirds, Mol. Ecol., 2018, vol. 27, no. 4, pp. 898—918. https://doi.org/10.1111/mec.14488

    Google Scholar 

  5. Barton, N. and Jones, J.S., Mitochondrial DNA: new clues about evolution, Nature, 1983, vol. 306, no. 24, pp. 317—318. https://doi.org/10.1038/306317a0

    Google Scholar 

  6. Harrison, R.G., Animal mitochondrial DNA as a genetic marker in population and evolutionary biology, TREE, 1989, vol. 4, no. 7, pp. 6—11. https://doi.org/10.1016/0169-5347(89)90006-2

    Google Scholar 

  7. Pereira, S.L., Mitochondrial genome organization and vertebrate phylogenetics, Genet. Mol. Biol., 2000, vol. 23, no. 4, pp. 745—752. https://doi.org/10.1590/S1415-47572000000400008

    Google Scholar 

  8. Hebert, P.D.N., Ratnasingham, S., and de Waard, J.R., Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species, Proc. Biol. Sci., 2003, vol. 270, pp. S96—S99. https://doi.org/10.1098/rsbl.2003.0025

    Google Scholar 

  9. Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S., and Francis, C.M., Identification of birds through DNA barcodes, PLoS Biol., 2004, vol. 2, pp. 1657—1663. https://doi.org/10.1371/journal.pbio.0020312

    Google Scholar 

  10. Baker, A.J., Tavares, E.S., and Elbourne, R.F., Countering criticisms of single mitochondrial DNA gene barcoding in birds, Mol. Ecol. Resour., 2009, vol. 9, pp. 257—268. https://doi.org/10.1111/j.1755-0998.2009.02650.x

    Google Scholar 

  11. Andrejevic, M., Markovic, M.K., Bursac, B., et al., Identification of a broad spectrum of mammalian and avian species using the short fragment of the mitochondrially encoded cytochrome b gene, Forensic Sci. Med. Pathol., 2019, vol. 15, pp. 169—177. https://doi.org/10.1007/s12024-019-00096-4

    Google Scholar 

  12. Baker, A.J. and Marshall, H.D., Mitochondrial control region sequences as tools for understanding evolution in avian molecular evolution and systematics, in Avian Molecular Evolution and Systematics, Mindell, D., Ed., San Diego, CA: Academic, 1997, pp. 51—82.

    Google Scholar 

  13. Weir, J.T. and Schluter, D., Calibrating the avian molecular clock, Mol. Ecol., 2008, vol. 17, pp. 2321—2328. https://doi.org/10.1111/j.1365-294X.2008.03742.x

    Google Scholar 

  14. Lavinia, P.D., Kerr, K.C.R., Tubaro, P.L., et al., Calibrating the molecular clock beyond cytochrome b: assessing the evolutionary rate of COI in birds, J. Avian Biol., 2016, vol. 47, pp. 84—91. https://doi.org/10.1111/jav.00766

    Google Scholar 

  15. McClellan, D.A., Palfreyman, E.J., Smith, M.J., et al., Physicochemical evolution and molecular adaptation of the Cetacean and Artiodactyl cytochrome b proteins, Mol. Biol. Evol., 2005, vol. 22, no. 3, pp. 437—455. https://doi.org/10.1093/molbev/msi028

    Google Scholar 

  16. Gering, E.J., Opazo, J.C., and Storz, J.F., Molecular evolution of cytochrome b in high- and low-altitude deer mice (genus Peromyscus), Heredity, 2009, vol. 102, pp. 226—235. https://doi.org/10.1038/hdy.2008.124

    Google Scholar 

  17. Garvin, M.R., Bielawski, J.P., and Gharrett, A.J., Positive Darwinian selection in the piston that powers proton pumps in complex I of the mitochondria of Pacific salmon, PLoS One, 2012, vol. 7, no. 8, p. 10.1371. https://doi.org/10.1371/journal.pone.0024127

  18. Malyarchuk, B.A., Selective processes and adaptive evolution of the cytochrome b gene in salamanders of the genus Salamandrella, Russ. J. Genet., 2012, vol. 48, no. 6, pp. 605—610. https://doi.org/10.1134/S1022795412040084

    Google Scholar 

  19. Zhou, T., Shen, X., Irwin, D.M., et al., Mitogenomic analyses propose positive selection in mitochondrial genes for high-altitude adaptation in galliform birds, Mitochondrion, 2014, vol. 18, pp. 70—75. https://doi.org/10.1016/j.mito.2014.07.012

    Google Scholar 

  20. Gu, P., Liu, W., Yao, Y.F., et al., Evidence of adaptive evolution of alpine pheasants to high-altitude environment from mitogenomic perspective, Mitochondrial DNA, Part A, 2016, vol. 27, no. 1, pp. 455—462. https://doi.org/10.3109/19401736.2014.900667

    Google Scholar 

  21. Karyakin, I.V., Bakka, S.V., Grabovskii, M.A., et al., Saker falcon (Falco cherrug) in Russia, Inventarizatsiya, monitoring i okhrana klyuchevykh ornitologicheskikh territorii Rossii (Inventory, Monitoring and Protection of Key Bird Areas in Russia), Moscow: Soyuz Okhrany Ptits Rossii, 2005, issue 5, pp. 48—66.

  22. Kovacs, A., Williams, N.P., and Galbraith, C.A., Saker Falcon Falco cherrug Global Action Plan (SakerGAP), Abu Dhabi: Coordinating Unit of the Raptors MOU, 2014.

    Google Scholar 

  23. Nittinger, F., Gamauf, A., Pinsker, W., et al., Phylogeography and population structure of the saker falcon (Falco cherrug) and the influence of hybridization: mitochondrial and microsatellite data, Mol. Ecol., 2007, vol. 16, pp. 1497—1517. https://doi.org/10.1111/j.1365-294X.2007.03245.x

    Google Scholar 

  24. Potapov, E. and Sale, R., The Gyrfalcon, London: Poyser, 2005.

    Google Scholar 

  25. BirdLife International. IUCN Red List for birds. http://www.birdlife.org. Accessed April, 2020.

  26. Checklist of CITES species. http://checklist.cites.org. Accessed April, 2020.

  27. Krasnaya kniga Rossiiskoi Federatsii (zhivotnye) (The Red Book of the Russian Federation (Animals)), Moscow: Astrel’, 2001.

  28. On the approval of the list of especially valuable wild animals and aquatic biological resources belonging to the species included in the Red Book of the Russian Federation and (or) protected by international treaties of the Russian Federation, for the purposes of Articles 226.1 and 258.1 of the Criminal Code of the Russian Federation: Resolution of the Government of the Russian Federation of October 31, 2013, no. 978. http://static.government.ru/media/files/41d49d332fe-d37b0fcb2.pdf. Accessed April, 2020.

  29. Wilcox, J.J.S., Boissinot, S., and Idaghdour, Y., Falcon genomics in the context of conservation, speciation, and human culture, Ecol. Evol., 2019, vol. 9, pp. 14523—14537. https://doi.org/10.1002/ece3.5864

    Google Scholar 

  30. Esposti, D.M., Vries, D.S., Crimi, M., et al., Mitochondrial cytochrome b: evolution and structure of the protein, Biochim. Biophys. Acta, 1993, vol. 1143, no. 3, pp. 243—271. https://doi.org/10.1016/0005-2728(93)90197-n

    Google Scholar 

  31. Zhang, Z., Huang, L., Shulmeister, V.M., et al., Electron transfer by domain movement in cytochrome bc 1, Nature, 1998, vol. 392, pp. 677—684. https://doi.org/10.1038/33612

    Google Scholar 

  32. Wink, M., Sauer-Giirth, H., Ellis, D., and Kenward, R., Phylogenetic relationships in the Hierofalco complex (Saker-, Gyr-, Lanner-, Laggar Falcon), Raptors Worldwide, WWGBP/MME, 2004, pp. 499—504.

    Google Scholar 

  33. Shnaider, E.P., Nikolenko, E.G., Karyakin, I.V., et al., The results of a foster parents’ adoption method implementation for restoration of the saker falcon population in Russia (with the results of GPS/GSM tracking of fledglings), Pernatye Khishchniki Okhr., 2018, no. 37, pp. 66—94. https://doi.org/10.19074/1814-8654-2018-37-66-94

  34. https://www.ncbi.nlm.nih.gov. Accessed April, 2020.

  35. Horvath, M.B., Martinez-Cruz, B., Negro, J.J., et al., An overlooked DNA source for non-invasive genetic analysis in birds, J. Avian Biol., 2005, vol. 36, no. 1, pp. 84—88. https://doi.org/10.1111/j.0908-8857.2005.03370.x

    Google Scholar 

  36. Nacer, D.F. and Amaral, F.R., Striking pseudogenization in avian phylogenetics: numts are large and common in falcons, Mol. Phylogenet. Evol., 2017, vol. 115, pp. 1—6. https://doi.org/10.1016/j.ympev.2017.07.002

    Google Scholar 

  37. Kumar, S., Stecher, G., Li, M., et al., MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, pp. 1547—1549. https://doi.org/10.1093/molbev/msy096

    Google Scholar 

  38. Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 1985, vol. 39, pp. 783—791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Google Scholar 

  39. Tamura, K. and Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol. Biol. Evol., 1993, vol. 10, pp. 512—526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

    Google Scholar 

  40. Cytochrome bc1 complex from chicken with pfvs-designed moa inhibitor bound. https://www.rcsb.org/ structure/3TGU. Accessed April, 2020.

  41. Guex, N., Peitsch, M.C., and Schwede, T., Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective, Electrophoresis, 2009, vol. 30, pp. S162—S173. https://doi.org/10.1002/elps.200900140

    Google Scholar 

  42. Benkert, P., Biasini, M., and Schwede, T., Toward the estimation of the absolute quality of individual protein structure models, Bioinformatics, 2011, vol. 27, pp. 343—350. https://doi.org/10.1093/bioinformatics/btq662

    Google Scholar 

  43. Bertoni, M., Kiefer, F., Biasini, M., et al., Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology, Sci. Rep., 2017, vol. 7, p. 10480. https://doi.org/10.1038/s41598-017-09654-8

    Google Scholar 

  44. Bienert, S., Waterhouse, A., de Beer, T.A.P., et al., The SWISS-MODEL repository—new features and functionality, Nucleic Acids Res., 2017, vol. 45, pp. D313—D319.https://doi.org/10.1093/nar/gkw1132

    Google Scholar 

  45. Waterhouse, A., Bertoni, M., Bienert, S., et al., SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res., 2018, vol. 46, pp. W296—W303. https://doi.org/10.1093/nar/gky427

    Google Scholar 

  46. Studer, G., Rempfer, C., Waterhouse, A.M., et al., QMEANDisCo—distance constraints applied on model quality estimation, Bioinformatics, 2020, vol. 36, no. 6, pp. 1765—1771. https://doi.org/10.1093/bioinformatics/btz828

    Google Scholar 

  47. Wang, J., Youkharibache, P., Zhang, D., et al., iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures, Bioinformatics, 2020, vol. 36, no. 1, pp. 131—135. https://doi.org/10.1093/bioinformatics/btz502

    Google Scholar 

  48. Roy, A., Kucukural, A., and Zhang, Y., I-TASSER: a unified platform for automated protein structure and function prediction, Nat. Protoc., 2010, vol. 5, pp. 725—738. https://doi.org/10.1038/nprot.2010.5

    Google Scholar 

  49. Yang, J., Yan, R., Roy, A., et al., The I-TASSER suite: protein structure and function prediction, Nat. Methods, 2015, vol. 12, pp. 7—8. https://doi.org/10.1038/nmeth.3213

    Google Scholar 

  50. Yang, J. and Zhang, Y., I-TASSER server: new development for protein structure and function predictions, Nucleic Acids Res., 2015, vol. 43, pp. W174—W181. https://doi.org/10.1093/nar/gkv342

    Google Scholar 

  51. Choi, Y., Sims, G.E., Murphy, S., et al., Predicting the functional effect of amino acid substitutions and indels, PLoS One, 2012, vol. 7, no. 10. e46688. https://doi.org/10.1371/journal.pone.0046688

    Google Scholar 

  52. Choi, Y., A fast computation of pairwise sequence alignment scores between a protein and a set of single-locus variants of another protein, Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine, New York: Association for Computing Machinery, 2012, pp. 414—417. https://doi.org/10.1145/2382936.2382989

  53. Choi, Y. and Chan, A.P., PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels, Bioinformatics, 2015, vol. 31, no. 16, pp. 2745—2747. https://doi.org/10.1093/bioinformatics/btv195

    Google Scholar 

  54. Woolley, S., Johnson, J., Smith, M.J., et al., TreeSAAP: selection on amino acid properties using phylogenetic trees, Bioinformatics, 2003, vol. 19, no. 5, pp. 671—672. https://doi.org/10.1093/bioinformatics/btg043

    Google Scholar 

  55. Yang, Z., Nielsen, R., Goldman, N., and Pedersen, A.M., Codon-substitution models for heterogeneous selection pressure at amino acid sites, Genetics, 2000, vol. 155, pp. 431—449.

    Google Scholar 

  56. Yang, Z., Phylogenetic analysis using parsimony and likelihood methods, J. Mol. Evol., 1996, vol. 42, pp. 294—307. https://doi.org/10.1007/BF02198856

    Google Scholar 

  57. Rubin, A.B., Biofizika (Biophysics), Moscow: Universitet, 1999.

    Google Scholar 

  58. Karyakin, I.V., Subspecies population structure of the saker falcon range, Pernatye Khishchniki Okhr., 2011, no. 21, pp. 116—171.

Download references

Funding

This study was carried out within the framework of the state contract with the All-Russian Research Institute for Environmental Protection of 2019, “Identification of Genetic Markers of Natural Populations of Rare and Highly Valuable Species of Birds and Mammals to Justify Programs for the Conservation and Reintroduction of These Species, as well as Assessment of the Genetic Diversity of Rare and Highly Valuable Species of Birds (Falconiformes and Gruiformes) Raised at Russian Hatcheries,” and the section of the State contract with the Koltzov Institute of Developmental Biology, Russian Academy of Sciences, of 2020, no. 0108-2019-0007, “Molecular Genetic and Ecological Mechanisms of Speciation and Early Stages of Evolution. Development of Approaches for Assessing the Homeostasis of the Development of Biological Systems (Methodology of Population Developmental Biology).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Rozhkova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozhkova, D.N., Zinevich, L.S., Karyakin, I.V. et al. Non-Neutral Cytochrome b Variability in the Saker Falco cherrug Grey, 1834 and Gyrfalcon Falco rusticolus L.. Russ J Genet 57, 468–476 (2021). https://doi.org/10.1134/S1022795421040128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421040128

Keywords:

Navigation