Skip to main content
Log in

Association of the Aldosterone Synthase Gene (CYP11B2) Polymorphic Locus rs1799998, c.–344C>T with the Development of Pulmonary Sarcoidosis

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Pulmonary sarcoidosis is an immunoinflammatory disease. Aldosterone is able to activate cells of the innate immunity, and its level depends on the aldosterone synthase (CYP11B2) activity. The role of the CYP11B2 gene in the etiology and pathogenesis of pulmonary sarcoidosis has not been studied. In this paper, the association of the CYP11B2 gene polymorphism (rs1799998, c.–344T>C) with the development of pulmonary sarcoidosis and the assessment of the relationship between the CYP11B2 gene polymorphic variants and biochemical blood plasma parameters (CRP, VCAM1, IL1, IL6, TNF) were studied. The study included 255 persons (119 patients diagnosed with pulmonary sarcoidosis and 136 healthy donors) living in the Republic of Karelia. Analysis of the rs1799998 locus of the CYP11B2 gene in the indicated groups was carried out by polymerase chain reaction with subsequent restriction fragment length polymorphism analysis (PCR-RFLP). The content of CRP, VCAM1, IL1, IL6, and TNF in the blood plasma of healthy persons was determined by enzyme-linked immunosorbent assay (ELISA). It was found that the frequency of the TT genotype for rs1799998 of the CYP11B2 gene was significantly higher in the group of patients with pulmonary sarcoidosis than in the group of healthy persons (χ2 = 4.05; p = 0.045). An increased risk of developing pulmonary sarcoidosis was revealed in carriers of the T allele (OR = 1.60; 95% CI: 1.102–2.221) and the TT genotype (OR = 2.16; 95% CI: 1.181–3.947). The VCAM1 content in the blood plasma of healthy donors is significantly higher in persons with the TT genotype compared with carriers of alternative genotypes (1465.91 and 967.05 ng/mL, respectively; p = 0.002).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Judson, M.A., The clinical features of sarcoidosis: a comprehensive review, Clin. Rev. Allergy Immunol., 2015, vol. 49, no. 1, pp. 63—78. https://doi.org/10.1007/s12016-014-8450-y

    Article  PubMed  Google Scholar 

  2. Avdeev, S.N., Pulmonary hypertension in sarcoidosis, Pul’monologiya, 2016, vol. 26, no. 6, pp. 725—735.

    Article  Google Scholar 

  3. Boucly, A., Cottin, V., Nunes, H., et al., Management and long-term outcomes of sarcoidosis-associated pulmonary hypertension, Eur. Respir. J., 2017, vol. 50, no. 4. pii: 1700465. https://doi.org/10.1183/13993003.00465-2017

    Article  CAS  PubMed  Google Scholar 

  4. Vizel’, A.A., Vizel’, I.Yu., and Amirov, N.B., Epidemiology of sarcoidosis in the Russian Federation, Vestn. Sovrem. Klin. Med., 2017, vol. 10, no. 5, pp. 66—73.

    Google Scholar 

  5. Tikhonovich, E.L., Vezikova, N.N., Markelova, O.A., and Malysheva, I.E., Epidemiology, clinical features, diagnosis and treatment of sarcoidosis in Karelia, Uch. Zap. Petrozavodsk. Gos. Univ., 2015, no. 6(151), pp. 67—71.

  6. Johns, C.J. and Michele, T.M., The clinical management of sarcoidosis: a 50-year experience at the Johns Hopkins Hospital, Medicine (Baltimore), 1999, vol. 78, no. 2, pp. 65—111. https://doi.org/10.1097/00005792-199903000-00001

    Article  CAS  PubMed  Google Scholar 

  7. Malysheva, I.E., Topchieva, L.V., and Tikhonovich, E.L., The role of gene polymorphism in susceptibility to lung sarcoidosis, Pul’monologiya, 2019, vol. 29, no. 5, pp. 596—603. https://doi.org/10.18093/0869-0189-2019-29-5-596-603

    Article  Google Scholar 

  8. Khan, Z., Cao, D.Y., Giani, J.F., et al., Overexpression of the C-domain of angiotensin-converting enzyme reduces melanoma growth by stimulating M1 macrophage polarization, J. Biol. Chem., 2019, vol. 294, no. 12, pp. 4368—4380. https://doi.org/10.1074/jbc.RA118.006275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Monastyrskaya, E.A., Lyamina, S.V., and Malyshev, I.Yu., M1 and M2 phenotypes of activated macrophages and their role in the immune response and pathology, Patogenez, 2008, vol. 6, no. 4, pp. 31—39.

    Google Scholar 

  10. Lieberman, J., Elevation of serum angiotensin-converting-enzyme (ACE) level in sarcoidosis, Am. J. Med., 1975, vol. 59, no. 3, pp. 365—372. https://doi.org/10.1016/0002-9343(75)90395-2

    Article  CAS  PubMed  Google Scholar 

  11. Lynch, J.P., Kazerooni, E.A., and Gay, S.E., Pulmonary sarcoidosis, Clin. Chest Med., 1997, vol. 18, no. 4, pp. 755—785. https://doi.org/10.1016/s0272-5231(05)70417-2

    Article  PubMed  Google Scholar 

  12. Li, Y., Angiotensin-converting enzyme gene insertion/deletion polymorphism and essential hypertension in the Chinese population: a meta-analysis including 21,058 participants, Int. Med. J., 2012, vol. 42, no. 4, pp. 439—444. https://doi.org/10.1111/j.1445-5994.2011.02584.x

    Article  CAS  Google Scholar 

  13. Kranzhofer, R., Kranzhöfer, R., Browatzki, M., et al., Angiotensin II activates the proinflammatory transcription factor nuclear factor kappa B in human monocytes, Biochem. Biophys. Res. Commun., 1999, vol. 257, pp. 826—828. https://doi.org/10.1006/bbrc.1999.0543

    Article  CAS  PubMed  Google Scholar 

  14. Baryshnikova, G.A. and Averin, E.E., Aldosterone in arterial hypertension: new therapeutic possibilities, Consilium Med., 2013, vol. 15, no. 10, pp. 18—23.

    Google Scholar 

  15. Holloway, C.D., MacKenzie, S.M., Fraser, R., et al., Effects of genetic variation in the aldosterone synthase (CYP11B2) gene on enzyme function, Clin. Endocrinol. (Oxford), 2009, vol. 70, no. 3, pp. 363—371. https://doi.org/10.1111/j.1365-2265.2008.03383.x

    Article  CAS  Google Scholar 

  16. Løvås, K., McFarlane, I., Nguyen, H.H., et al., A novel CYP11B2 gene mutation in an Asian family with aldosterone synthase deficiency, J. Clin. Endocrinol. Metab., 2009, vol. 94, no. 3, pp. 914—919. https://doi.org/10.1210/jc.2008-1524

    Article  CAS  PubMed  Google Scholar 

  17. White, P.C., Hautanen, A., and Kupari, M., Aldosterone synthase (CYP11B2) polymorphisms and cardiovascular function, Endocr. Res., 1998, vol. 24, nos. 3—4, pp. 797—804. https://doi.org/10.3109/07435809809032690

    Article  CAS  PubMed  Google Scholar 

  18. Baughman, R.P., Culver, D.A., and Judson, M.A., A concise review of pulmonary sarcoidosis, Am. J. Respir. Crit. Care Med., 2011, vol. 183, no. 5, pp. 573—581. https://doi.org/10.1164/rccm.201006-0865CI

    Article  CAS  PubMed  Google Scholar 

  19. Hlubocká, Z., Jáchymová, M., Heller, S., et al., Association of the –344T/C aldosterone synthase gene variant with essential hypertension, Physiol. Res., 2009, vol. 58, no. 6, pp. 785—792.

    Article  Google Scholar 

  20. Brown, N.J., Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis, Nat. Rev. Nephrol., 2013, vol. 9, no. 8, pp. 459—469. https://doi.org/10.1038/nrneph.2013.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de Man, F.S., Tu, L., Handoko, M.L., et al., Dysregulated renin—angiotensin—aldosterone system contributes to pulmonary arterial hypertension, Am. J. Respir. Crit. Care Med., 2012, vol. 186, no. 8, pp. 780—789. https://doi.org/10.1164/rccm.201203-0411OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song, G.G., Kim, J.H., and Lee, Y.H., Associations between the angiotensin-converting enzyme insertion/deletion polymorphism and susceptibility to sarcoidosis: a meta-analysis, JRAAS, 2015, vol. 16, no. 1, pp. 219—226. https://doi.org/10.1177/1470320313489059

    Article  CAS  PubMed  Google Scholar 

  23. Rigat, B., Hubert, C., Alhenc-Gelas, F., et al., An insertion/deletion polymorphism in the angiotensin I‑converting enzyme gene accounting for half the variance of serum enzyme levels, J. Clin. Invest., 1990, vol. 86, no. 4, pp. 1343—1346. https://doi.org/10.1172/JCI114844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Williams, J.S. and Williams, G.H., 50th anniversary of aldosterone, J. Clin. Endocrinol. Metab., 2003, vol. 88, no. 6, pp. 2364—2372. https://doi.org/10.1210/jc.2003-030490

    Article  CAS  PubMed  Google Scholar 

  25. Jia, M., Zhang, H., Song, X., et al., Association of CYP11B2 polymorphisms with susceptibility to primary aldosteronism: a meta-analysis, Endocr. J., 2013, vol. 60, no. 7, pp. 861—870. https://doi.org/10.1507/endocrj.ej12-0455

    Article  CAS  PubMed  Google Scholar 

  26. White, P.C. and Slutsker, L., Haplotype analysis of CYP11B2, Endocr. Res., 1995, vol. 21, nos. 1—2, pp. 437—442. https://doi.org/10.3109/07435809509030459

    Article  CAS  PubMed  Google Scholar 

  27. Tamaki, S., Iwai, N., and Tsujita, Y., Genetic polymorphism of CYP11B2 gene and hypertension in Japanese, Hypertension, 1999, vol. 33, pp. 266—270.

    Article  CAS  Google Scholar 

  28. Mopidevi, B., Sivankutty, I., Hao, S., et al., Effects of intron conversion in the human CYP11B2 gene on its transcription and blood pressure regulation in transgenic mice, J. Biol. Chem., 2020. https://doi.org/10.1074/jbc.RA120.013047

  29. Herrada, A.A., Campino, C., Amador, C.A., et al., Aldosterone as a modulator of immunity: implications in the organ damage, J. Hypertens., 2011, vol. 29, no. 9, pp. 1684—1692. https://doi.org/10.1097/HJH.0b013e32834a4c75

    Article  CAS  PubMed  Google Scholar 

  30. Muñoz-Durango, N., Barake, M.F., and Letelier, N.A., Immune system alterations by aldosterone during hypertension: from clinical observations to genomic and nongenomic mechanisms leading to vascular damage, Curr. Mol. Med., 2013, vol. 6, pp. 1035—1046. https://doi.org/10.2174/1566524011313060015

    Article  CAS  Google Scholar 

  31. Lombès, M., Binart, N., Oblin, M.E., et al., Characterization of the interaction of the human mineralocorticosteroid receptor with hormone response elements, Biochem. J., 1993, vol. 292, no. 2, pp. 577—583. https://doi.org/10.1042/bj2920577

    Article  PubMed  PubMed Central  Google Scholar 

  32. Muñoz-Durango, N., Vecchiola, A., Gonzalez-Gomez, L.M., et al., Modulation of immunity and inflammation by the mineralocorticoid receptor and aldosterone, Biomed. Res. Int., 2015, article 652738. https://doi.org/10.1155/2015/652738

  33. Namsolleck, P. and Unger, T., Aldosterone synthase inhibitors in cardiovascular and renal diseases, Nephrol. Dial. Transplant., 2014, vol. 9, pp. 62—68. https://doi.org/10.1093/ndt/gft402

    Article  CAS  Google Scholar 

  34. Lang, F., Artunc, F., and Vallon, V., The physiological impact of the serum and glucocorticoid-inducible kinase SGK1, Curr. Opin. Nephrol. Hypertens., 2009, vol. 18, pp. 439—448. https://doi.org/10.1097/MNH.0b013e32832f125e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by funds from the federal budget for the implementation of the State Task of the Karelian Research Center of the Russian Academy of Sciences (topic no. 0218-2019-0077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Malysheva.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malysheva, I.E., Topchieva, L.V. & Tikhonovich, E.L. Association of the Aldosterone Synthase Gene (CYP11B2) Polymorphic Locus rs1799998, c.–344C>T with the Development of Pulmonary Sarcoidosis. Russ J Genet 57, 591–597 (2021). https://doi.org/10.1134/S1022795421040074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421040074

Keywords:

Navigation