Skip to main content
Log in

Specific Lux Biosensors of Escherichia coli Containing pRecA::lux, pColD::lux, and pDinI::lux Plasmids for Detection of Genotoxic Agents

  • GENERAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The lux biosensor of E. coli MG1655 (pDinI::lux) was constructed and a comparative study of the SOS response of three biosensors E. coli MG1655 (pRecA::lux), E. coli MG1655 (pColD::lux), and E. coli MG1655 (pDinI::lux) under the action of genotoxic agents was performed. The listed biosensors were named, respectively, PRecA, PColD, and PDinI. The response amplitude (RA) was chosen as an indicator of the SOS response level of lux biosensors. It was shown that RA of the PDinI biosensor was more expressed than RA of the PRecA biosensor under the action of hydrogen peroxide, alkylating agents such as NMU, MMS, and streptozotocin, antibacterial agent such as dioxidine, and cytostatics such as mitomycin C and cisplatin. Antimetabolite 5-fluorouracil showed activity only with PDinI. Furacilin and 4-NQO, whose metabolites form adducts with DNA, were more active on PColD than on PRecA and PDinI. DNA gyrase inhibitors such as nalidixic acid and ciprofloxacin were less active on PDinI than on PColD and PRecA. Overall, among 13 tested substances, 8 more actively induced SOS response in the PDinI biosensor than in PColD and PRecA. At the same time, 5-fluororacil induced SOS response only with the PDinI biosensor. It was concluded that the PDinI biosensor can be successfully used for the primary detection of potential genotoxicants by their ability to induce SOS response in E. coli cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Vollmer, A.C., Belkin, S., Smulski, D.R., et al., Detection of DNA damage by use of Escherichia coli carrying recA'::lux, uvrA'::lux, or alkA'::lux reporter plasmids, Appl. Environ. Microbiol., 1997, vol. 63, pp. 2566—2571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davidov, Y., Rozen, R., Smulski, D.R., et al., Improved bacterial SOS promoter&Colon: lux fusions for genotoxicity detection, Mut. Res., 2000, vol. 466, pp. 97—107.

    Article  CAS  Google Scholar 

  3. Norman, A.A., Hansen, L.H., and Sørensen, S.J., Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sulA promoters, Appl. Environ. Microbiol., 2005, vol. 71, pp. 2338—2346. https://doi.org/10.1128/AEM.71.5.2338-2346.2005

  4. Manukhov, I.V., Kotova, V.Yu., and Zavilgelsky, G.B., Action of 1,1-dimethylhydrazine on bacterial cells is determined by hydrogen peroxide, Mut. Res., 2007, vol. 634, pp. 176—179.

    Google Scholar 

  5. Song, Y., Li, G., Thornton, S.F., and Thompson, I.P., Optimization of bacterial whole cell bioreporters for toxicity assay of environmental samples, Environ. Sci. Technol., 2009, vol. 43, no. 20, pp. 7931—7938.

    Article  CAS  PubMed  Google Scholar 

  6. Kotova, V.Yu., Manukhov, I.V., and Zavilgelsky, G.B., Lux biosensors for detecting SOS response, heat shock and oxidative stress, Biotekhnologiya, 2009, no. 6, pp. 16—25. https://doi.org/10.1134/S0003683810080089

  7. Zavilgelsky, G.B., Kotova, V.Yu., and Manukhov, I.V., Sensor bioluminescent systems based on lux operons for the toxic substances detection, Khim. Fiz., 2012, vol. 31, no. 10, pp. 15—20.

    Google Scholar 

  8. Ahn, J.-M., Hwang, E.T., Youn, C.-H., et al., Prediction and classification of the modes of genotoxic actions using bacterial biosensors specific for DNA damages, Biosens. Bioelectron., 2009, vol. 25, pp. 767—772. https://doi.org/10.1016/j.bios.2009.08.025

    Article  CAS  PubMed  Google Scholar 

  9. Igonina, E.V., Marsova, M.V., and Abilev, S.K., Lux-biosensors: screening biologically active compounds for genotoxicity, Ekol. Genet., 2016, vol. 14, no. 4, pp. 52—62. https://doi.org/10.17816/ecogen14452-62

    Article  Google Scholar 

  10. Van Dyk, T.K. and Rosson, R.A., Photorhabdus luminescens luxCDABE promoter probe vectors, Methods Mol. Biol., 1998, vol. 102, pp. 85—95.

    CAS  PubMed  Google Scholar 

  11. Weng, M.-W., Zheng, Y., Jasti, V.P., et al., Repair of mitomycin C mono- and interstrand cross-linked DNA adducts by UvrABC: a new model, Nucleic Acids Res., 2010, vol. 38, no. 20, pp. 6976—6984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abilev, S.K. and Glaser, V.M., Genetic toxicology: findings and challenges, Russ. J. Genet., 2013, vol. 49, no. 1, pp. 70—80. https://doi.org/10.1134/S102279541301002X

    Article  CAS  Google Scholar 

  13. McCann, J., Choi, E., Yamasaki, E., and Ames, B.N., Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals, Proc. Natl. Acad. Sci. U.S.A., 1975, vol. 72, pp. 5135—5139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Quillardet, P., Huisman, O., D’Ari, R., et al., SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K12 to measure genotoxity, Proc. Natl. Acad. Sci. U.S.A., 1982, vol. 79, no. 19, pp. 5971—5975. https://doi.org/10.1073/pnas.79.19.5971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Quillardet, P. and Hofnung, M., SOS chromotest: a review, Mut. Res., 1993, vol. 297, pp. 235—279. https://doi.org/10.1016/0165-1110(93)90019-j

    Article  CAS  Google Scholar 

  16. Cox, M.M., Regulation of bacterial RecA protein function, Crit. Rev. Biochem. Mol. Biol., 2007, vol. 42, no. 1, pp. 41—63. https://doi.org/10.1080/10409230701260258

    Article  CAS  PubMed  Google Scholar 

  17. Galkin, V.E., Britt, R.L., Bane, L.B., et al., Two modes of binding of DinI to RecA filament provide a new insight into the regulation of SOS response by DinI protein, J. Mol. Biol., 2011, vol. 408, pp. 815—824. https://doi.org/10.1016/j.jmb.2011.03.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Voloshin, O.N., Ramirez, B.E., Bax, A., and Camerini-Otero, R.D., A model for the abrogation of the SOS response by an SOS protein: a negatively charged helix in DinI mimics DNA in its interaction with RecA, Genes Dev., 2001, vol. 15, pp. 415—427. https://doi.org/10.1101/gad.86290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yasuda, T., Morimatsu, K., Kato, R., et al., Physical interactions between DinI and RecA nucleoprotein filament for the regulation of SOS mutagenesis, EMBO J., 2001, vol. 20, pp. 1192—1202. https://doi.org/10.1093/emboj/20.5.1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yasuda, T., Morimatsu, K., Horii, K., et al., Inhibition of Escherichia coli RecA coprotease by DinI, EMBO J., 1998, vol. 17, no. 11, pp. 3207—3216. https://doi.org/10.1093/emboj/17.11.3207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Longley, D.S., Harkin, D.P., and Johnston, P.G., 5‑Fluorouracil: mechanisms of action and clinical strategies, Nat. Rev. Cancer, 2003, vol. 3, no. 5, pp. 330—337. https://doi.org/10.1038/nrc1074

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (project no. 190400200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Smirnova.

Ethics declarations

The authors declare that they have no conflict of interest.

This study does not contain any research involving animals as research objects.

This study does not contain any research involving people as an object.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abilev, S.K., Kotova, V.Y., Smirnova, S.V. et al. Specific Lux Biosensors of Escherichia coli Containing pRecA::lux, pColD::lux, and pDinI::lux Plasmids for Detection of Genotoxic Agents. Russ J Genet 56, 666–673 (2020). https://doi.org/10.1134/S1022795420060022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420060022

Keywords:

Navigation