Skip to main content
Log in

Identification and Characterization of the Expansin Genes in Triticum urartu in Response to Various Phytohormones

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Expansins are ancient proteins involved in cell wall loosening during diverse biological processes in plants. They may participate inplant developmental processes and in responses to multiple external stresses. Triticum urartu is a diploid wheat, which is the A genome donor in hexaploid wheat (AABBDD). Wheat is an important agricultural crop. In this study, a total of 39 expansin (EXP) genes in T. urartu were identified and categorised into three subfamilies according to their phylogenetic relationship, consisting of 19 EXPA genes, 18 EXPB genes and 2 EXLA genes, but no EXLB genes. The structures of T. urartu EXP (TuEXP) genes were conserved. Expression analysis and transcript profiling revealed differential expression of TuEXPs in different tissues and developmental stages. Expression patterns of TuEXPs genes were also investigated in different tissues under different phytohormone treatments at the three leafstage. The expression of most of the analyzed genes were either up-or down-regulated, which could help research on expansin-related mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Cosgrove, D.J., Li, L.C., Cho, H.T., et al., The growing world of expansins, Plant Cell Physiol., 2002, vol. 43, pp. 1436—1444.

    Article  CAS  PubMed  Google Scholar 

  2. McQueen-Mason, S., Durachko, D.M., and Cosgrove, D.J., Two endogenous proteins that induce cell wall extension in plants, Plant Cell, 1992, vol. 4, pp. 1425—1433.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cosgrove, D.J., Plant expansins: diversity and interactions with plant cell walls, Curr. Opin. Plant Biol., 2015, vol. 25, pp. 162—172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, T., Park, Y.B., Caporini, M.A., et al., Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 41, pp. 16444—16449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sampedro, J. and Cosgrove, D.J., The expansin superfamily, Genome Biol., 2005, vol. 6, no. 12, p. 242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Georgelis, N., Yennawar, N.H., and Cosgrove, D.J., Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 37, pp. 14830—14835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, W., Yan, H., Chen, W., et al., Genome-wide identification and characterization of maize expansin genes expressed in endosperm, Mol. Genet. Genomics, 2014, vol. 289, no. 6, pp.1061—1074.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, J.F, Xu, Y.Q, Dong, J.M, et al., Genome-wide identification of wheat (Triticum aestivum) expansins and expansin expression analysis in cold-tolerant and cold-sensitive wheat cultivars, PLoS One, 2018, vol. 13. e0195138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Carey, R.E. and Cosgrove, D.J., Portrait of the expansin superfamily in Physcomitrella patens: comparisons with angiosperm expansins, Ann. Bot., 2007, vol. 99, no. 6, pp.1131—1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rose, J.K.C, Cosgrove, D.J, Albersheim, P., et al., Dectection of expansin proteins and activity during tomato fruit ontogeny, Plant Physiol., 2000, vol. 123, no. 4, pp. 1583—1592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cho, D.J. and Cosgrove, D.J., Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana,Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 17, pp. 9783—9788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo, W., Zhao, J., Li, X., Qin, L., et al., A soybean beta-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses, Plant J., 2011, vol. 66, no. 3, pp. 541—552.

    Article  CAS  PubMed  Google Scholar 

  13. Yu, Z.M., Kang B., He, X. W., et al., Root hair-specific expansins modulate root hair elongation in rice, Plant J., 2011, vol. 66, no. 5, pp. 725—734.

    Article  CAS  Google Scholar 

  14. Kuluev, B.R., Safiullina, M.G., Kniazev, A.V., and Chemeris, A.V., Effect of ectopic expression of NtEXPA5 gene on cell size and growth of organs of transgenic tobacco plants, Ontogenez, 2013, vol. 44, pp. 34—41.

    CAS  PubMed  Google Scholar 

  15. Harrison, E.P., McQueen-Mason, S.J., and Manning, K., Expression of six expansin genes in relation to extension activity in developing strawberry fruit, J. Exp. Bot., 2001, vol. 52, no. 360, pp. 1437—1446.

    Article  CAS  PubMed  Google Scholar 

  16. Ishimaru, M., Smith, D.L., Gross, K.C., and Kobayashi, S., Expression of three expansin genes during development and maturation of Kyoho grape berries, J. Plant Physiol., 2007, vol. 164, no. 12, pp. 1675—1682.

    Article  CAS  PubMed  Google Scholar 

  17. Han, Y., Li, A., Li, F., et al., Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation. Plant Physiol. Biochem., 2012, vol. 54, pp. 49—58.

    Article  CAS  PubMed  Google Scholar 

  18. Lu, P., Kang, M., Jiang, X., et al., RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis,Planta, 2013, vol. 237, no. 6, pp. 1547—1559.

    Article  PubMed  CAS  Google Scholar 

  19. Xu, J., Tian, J, Belanger, F.C., and Huang, B.R., Identification and characterization of an expansin gene AsEXP1 associated with heat tolerance in C3 Agrostis grass species, J. Exp. Bot., 2007, vol. 58, no. 58, pp. 3789—3796.

    Article  CAS  PubMed  Google Scholar 

  20. Marowa, P., Ding, A., and Kong, Y., expansins: roles in plant growth and potential applications in crop improvement, Plant Cell Rep., 2016, vol. 35, no. 5, pp. 949—965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park, C.H., Kim, T.W., Son, S.H., et al., Bгassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana, Phytochemistry, 2010, vol. 71, пo. 4, pp. 380—387.

  22. Lu, Y., Liu, L., Wang, X., et al., Genome-wide identification and expression analysis of the expansin gene family in tomato, Mol. Genet. Genomics, 2015, vol. 291, no. 2, pp. 597—608.

    Article  PubMed  CAS  Google Scholar 

  23. Lee, Y., Choi, D., and Kende, H., Expansins: ever-expanding numbers and functions, Curr. Opin. Plant Biol., 2001, vol. 4, no. 6, pp. 527—532.

    Article  CAS  PubMed  Google Scholar 

  24. Lee, Y. and Kende, H. Expression of alpha-expansin and expansin-like genes in deepwater rice, Plant Physiol., 2002, vol. 130, no. 3, pp. 1396—1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu, X., Song, C., Wang, B., and Cheng, J., Hidden Markov model used in protein sequence analysis, J. Biomed. Eng., 2002, vol. 19, no. 3, pp. 455—458.

    CAS  Google Scholar 

  26. Li, N.N., Pu, Y.Y., Gong, Y.C., et al., Genomic location and expression analysis of expansin gene family reveals the evolutionary and functional signficance in Triticum aestivum,Gene Genomics, 2016, vol. 38, no. 11, pp. 1021—1030.

    Article  CAS  Google Scholar 

  27. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, no. 12, pp. 2725—2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sperandeo, M.P., Annunziata, P., Ammendola, V., et al., Lysinuric protein intolerance: identification and functional analysis of mutations of the SLC7A7 gene, Hum. Mutat., 2005, vol. 25, no. 4, p. 410.

    Article  PubMed  Google Scholar 

  29. Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H., SignalP 4.0: discriminating signal peptides from transmembrane regions, Nat. Methods, 2011, vol. 8, no. 10, pp. 785—786.

    Article  CAS  PubMed  Google Scholar 

  30. Guo, A.Y., Zhu, Q.H., Chen, X., and Luo, J.C., GSDS: a gene structure display server, Yi chuan, 2007, vol. 29, pp. 1023—1026.

    Article  CAS  PubMed  Google Scholar 

  31. Lin, Y.X., Jiang, H.Y., Chu, Z.X., et al., Genome-wide identification, classification and analysis of heat shock transcription factor family in maize, BMC Genomics, 2011, vol. 12, no. 76, pp. 1—14.

    Article  CAS  Google Scholar 

  32. John, C.M., Preetam, H.S., and William, B.L. Trichomonas vaginalis: analysis of codon usage, Exp. Parasitol., 1997, vol. 87, no. 1, pp. 73–74.

    Article  Google Scholar 

  33. Deng, W., Wang, Y., Liu, Z., et al., HemI: a toolkit for illustrating heatmaps, PLoS One, 2014, vol. 9. e111988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Fredslund, J. and Lange, M., Primique: automatic design of specific PCR primers for each sequence in a family, BMC Bioinf., 2007, vol. 8, p. 369.

    Article  CAS  Google Scholar 

  35. Sampedro, J., Lee, Y., Carey, R.E., et al., Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family, Plant J., 2005, vol. 44, no. 3, pp. 409—419.

    Article  CAS  PubMed  Google Scholar 

  36. Plotkin, J.B. and Kudla, G., Synonymous but not the same: the cause and consequences of codon bias, Nat. Rev. Genet., 2011, vol. 12, no. 1, pp. 32—42.

    Article  CAS  PubMed  Google Scholar 

  37. Shewry, P.R., Wheat, J. Exp. Bot., 2009, vol. 60, no. 6, pp. 1537—1553.

    Article  CAS  PubMed  Google Scholar 

  38. Sharma, A., Sharma, N., Bhalla, P., and Singh, M., Comparative and evolutionary analysis of grass pollen allergens using Brachypodium distachyon as a model system, PLoS One, 2017, vol. 12. e0169686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zhu, Y., Wu, N., Song, W., et al., Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies, BMC Plant Biol., 2014, vol. 14, no. 1, p. 93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Dal Santo, S., Vannozzi, A., Tornielli, G.B., et al., Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics, PLoS One, 2013, vol. 8. e62206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu, Y., Liu, L., Wang, X., et al., Genome-wide identification and expression analysis of the expansin gene family in tomato, Mol. Genet. Genomics, 2015, vol. 291, no. 2, pp. 597—608.

    Article  PubMed  CAS  Google Scholar 

  42. O’Neill, Y., The composition and structure of plant primary walls, Plant Cell Wall, 2003, vol. 8, pp. 1—54.

    Google Scholar 

  43. Li, Y., Darley, C.P., Ongaro, V., et al., Plant expansins are a complex multigene family with an ancient evolutionary origin, Plant Physiol., 2002, vol. 128, no. 3, pp. 854—864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seader, V.H., Thornsberry, J.M., and Carey, R.E., Utility of the Amborella trichopoda expansin superfamily in elucidating the history of angiosperm expansins, J. Plant Res., 2016, vol. 129, no. 2, pp. 199—207.

    Article  CAS  PubMed  Google Scholar 

  45. Peng, X.J, Zhao, Y., Cao, J.G., et al., CCCH-type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments. PLoS One, 2012, vol. 7. e40120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao, Y., Zhou, Y.Q., Jiang, H.Y., et al., Systematic analysis of sequences and expression patterns of drought-responsive member of HD-Zip gene family in maize, PLoS One, 2011, vol. 6. e28488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, X., Zhao, J., Walk, T.C., and Liao, H., Characterization of soybean β-expansin genes and their expression responses to symbiosis, nutrient deficiency, and hormone treatment, Appl. Microbiol. Biotechnol., 2014, vol. 98, no. 6, pp. 2805—2817.

    Article  CAS  PubMed  Google Scholar 

  48. Xue, T., Wang, D., Zhang, S., et al., Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis,BMC Genomics, 2008, vol. 9, no. 550, pp. 1—21.

    Article  CAS  Google Scholar 

  49. Cho, H.T., and Cosgrove, D.J., Regulation of root hair initiation and expansin gene expression in Arabidopsis,Plant Cell, 2002, vol. 14, no. 12, pp. 3237—3253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu, Y., Thorne, E.T., Sharp, R.E., and Cosgrove, D.J., Modification of expansin transcript levels in the maize primary root at low water potentials, Plant Physiol., 2001, vol. 126, no. 4, pp. 1471—1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cho, H.T. and Kende, H., Expression of expansin genes is correlated with growth in deepwater rice, Plant Cell, 1997, vol. 9, no. 9, pp. 1661—1671.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Downes, B.P., Steinbaker, C.R., and Crowell, D.N., Expression and processing of a hormonally regulated beta-expansin from soybean, Plant Physiol., 2001, vol. 126, no. 1, pp. 244—252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, F., Han, Y., Feng, Y., et al., Expression of wheat expansin driven by the RD29 promoter in tobacco confers water-stress tolerance without impacting growth and development, J. Biotechnol., 2013, vol. 163, no. 3, pp. 281—291.

    Article  CAS  PubMed  Google Scholar 

  54. Li, F., Xing, S., Guo, Q., et al., Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco, J. Plant Physiol., 2011, vol. 168, no. 9, pp. 960—966.

    Article  CAS  PubMed  Google Scholar 

  55. Xu, Q., Xu, X., Shi, Y., et al., Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress, PLoS One, 2014, vol. 9. e100792

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhou, J., Xie, J., Liao, H., and Wang, X., Overexpression of beta-expansin gene GmEXPB2 improves phosphorus efficiency in soybean, Physiol. Plant., 2014, vol. 150, no. 2, pp. 194—204.

    Article  CAS  PubMed  Google Scholar 

  57. Yan, A., Wu, M., Yan, L., et al., AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis,PLoS One, 2014, vol. 9. e85208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

ACKONWLEDGMENTS

This research was funded by Capability improving and scientific research training project in the talent training fund of national natural science fund (J1210069). Thank the National Crop Germplasm Bank for providing seeds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Li or B. Hu.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Xu, Y., Feng, X. et al. Identification and Characterization of the Expansin Genes in Triticum urartu in Response to Various Phytohormones. Russ J Genet 56, 441–453 (2020). https://doi.org/10.1134/S1022795420040109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420040109

Keywords:

Navigation