Skip to main content
Log in

Genome-wide identification, characterization of expansin gene family of banana and their expression pattern under various stresses

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Expansin, a cell wall-modifying gene family, has been well characterized and its role in biotic and abiotic stress resistance has been proven in many monocots, but not yet studied in banana, a unique model crop. Banana is one of the staple food crops in developing countries and its production is highly influenced by various biotic and abiotic factors. Characterizing the expansin genes of the ancestor genome (M. acuminata and M. balbisiana) of present day cultivated banana will enlighten their role in growth and development, and stress responses. In the present study, 58 (MaEXPs) and 55 (MbaEXPs) putative expansin genes were identified in A and B genome, respectively, and were grouped in four subfamilies based on phylogenetic analysis. Gene structure and its duplications revealed that EXPA genes are highly conserved and are under negative selection whereas the presence of more number of introns in other subfamilies revealed that they are diversifying. Expression profiling of expansin genes showed a distinct expression pattern for biotic and abiotic stress conditions. This study revealed that among the expansin subfamilies, EXPAs contributed significantly towards stress-resistant mechanism. The differential expression of MaEXPA18 and MaEXPA26 under drought stress conditions in the contrasting cultivar suggested their role in drought-tolerant mechanism. Most of the MaEXPA genes are differentially expressed in the root lesion nematode contrasting cultivars which speculated that this expansin subfamily might be the susceptible factor. The downregulation of MaEXPLA6 in resistant cultivar during Sigatoka leaf spot infection suggested that by suppressing this gene, resistance may be enhanced in susceptible cultivar. Further, in-depth studies of these genes will lead to gain insight into their role in various stress conditions in banana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig 10

Similar content being viewed by others

Abbreviations

EXP:

Expansin

qRT-PCR:

Quantitative real-time polymerase chain reaction

FAO:

Food and Agriculture Organization

HMM:

Hidden Markov model

PPI:

Protein–protein interaction

MEME:

Multiple Em for motif elucidation

MEGA:

Molecular evolutionary genetics analysis

MeJA:

Methyl jasmonate

References

  • Abbasi A, Malekpour M, Sobhanverdi S (2021) The Arabidopsis expansin gene (AtEXPA18) is capable to ameliorate drought stress tolerance in transgenic tobacco plants. Mol Biol Rep 48(8):5913–5922. https://doi.org/10.1007/s11033-021-06589-2

    Article  CAS  PubMed  Google Scholar 

  • Abuqamar S, Ajeb S, Sham A, Enan MR, Iratni R (2013) A mutation in the expansin-like A2 gene enhances resistance to necrotrophic fungi and hypersensitivity to abiotic stress in Arabidopsis thaliana. Mol Plant Pathol 14:813–827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asha SVA, Sane AP, Nath P (2007) Multiple forms of α-expansin genes are expressed during banana fruit ripening and development. Postharvest Biol Technol 45(2):184–192

    CAS  Google Scholar 

  • Asif MH, Lakhwani D, Pathak S et al (2014) Transcriptome analysis of ripe and unripe fruit tissue of banana identifies major metabolic networks involved in fruit ripening process. BMC Plant Biol 14:316. https://doi.org/10.1186/s12870-014-0316-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backiyarani S, Uma S, Arunkumar G, Saraswathi MS, Sundararaju P (2014) Differentially expressed genes in incompatible interactions of Pratylenchus coffeae with Musa using suppression subtractive hybridization. Physiol Mol Plant Pathol 86:11–18

    CAS  Google Scholar 

  • Bashline L, Lei L, Gu Y (2014) Cell wall, cytoskeleton, and cell expansion in higher plants. Mol Plant 7(4):586–600

    CAS  PubMed  Google Scholar 

  • Belfield EJ, Ruperti B, Roberts JA, McQueen-Mason S (2005) Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra. J Exp Bot 56:817–823. https://doi.org/10.1093/jxb/eri076

    Article  CAS  PubMed  Google Scholar 

  • Blomme G, Eden-Green S, Mustaffa M, Nwauzoma B, Thangavelu R (2011) Major diseases of banana. In: Pillay M, Tenkouano A (eds) Banana breeding: progress and challenges. CRC Press, Boca Raton, pp 85–119

    Google Scholar 

  • Boron AK, Van Loock B, Suslov D, Markakis MN, Verbelen JP, Vissenberg K (2015) Over-expression of AtEXLA2 alters etiolated Arabidopsis hypocotyl growth. Ann Bot 115(1):67–80

    CAS  PubMed  Google Scholar 

  • Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P (1999a) Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11:2203–2216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brummell D, Harpster M, Civello P, Palys J, Bennett A, Dunsmuir P (1999b) Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11(11):2203–2216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology 4(1):10. https://doi.org/10.1186/1471-2229-4-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264

    CAS  PubMed  Google Scholar 

  • Chen F, Dahal P, Bradford KJ (2001) Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination. Plant Physiol 127(3):928–936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Han Y, Zhang M, Zhou S, Kong X, Wang W (2016) Overexpression of the wheat expansin gene TaEXPA2 improved seed production and drought tolerance in transgenic tobacco plants. PLoS ONE 11(4):e0153494. https://doi.org/10.1371/journal.pone.0153494

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Han Y, Kong X, Kang H, Ren Y, Wang W (2017) Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating Na+/K+ and antioxidant competence. Physiol Plant 159:161–177

    CAS  PubMed  Google Scholar 

  • Chen L, Zou W, Fei C, Wu G, Li X, Lin H, Xi D (2018) α-Expansin EXPA4 positively regulates abiotic stress tolerance but negatively regulates pathogen resistance in Nicotiana tabacum. Plant Cell Physiol 59:2317–2330

    CAS  PubMed  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    CAS  PubMed  Google Scholar 

  • Cheng L, Wang Y, He Q, Li H, Zhang X, Zhang F (2016) Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration. BMC Plant Biol 16:188. https://doi.org/10.1186/s12870-016-0871-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho HT, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14(12):3237–3253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho HT, Kende H (1997) Expression of expansin genes is correlated with growth in deep water rice. Plant Cell 9(9):1661–1671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Civello PM, Powell AL, Sabehat A, Bennett AB (1999) An expansin gene expressed in ripening strawberry fruit. Plant Physiol 121(4):1273–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove DJ (2000) New genes and new biological roles for expansins. Curr Opin Plant Biol 3(1):73–78

    CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2015) Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol 25:162–172. https://doi.org/10.1016/j.pbi.2015.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Hont A, Denoeud F, Aury JM et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217. https://doi.org/10.1038/nature11241

    Article  CAS  PubMed  Google Scholar 

  • Dai F, Zhang C, Jiang X, Kang M, Yin X, Lu P, Gao J (2012) RhNAC2 and RhEXPA4 are involved in regulation of dehydration tolerance during the expansion of rose petals. Plant Physiol 160:2064–2082

    CAS  PubMed  PubMed Central  Google Scholar 

  • Datta A (2013) Genetic engineering for improving quality and productivity of crops. Agric Food Secur 2:15. https://doi.org/10.1186/2048-7010-2-15

    Article  Google Scholar 

  • Davey MW, Gudimella R, Harikrishna JA et al (2013) A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids. BMC Genom 14:683. https://doi.org/10.1186/1471-2164-14-683

    Article  CAS  Google Scholar 

  • De Schutter B, Speijer PR, Dochez C, Tenkouano A, De Waele D (2001) Evaluating host plant reaction of Musa germplasm to Radopholus similis by inoculation of single primary roots. Nematropica 31(2):295–299

    Google Scholar 

  • Dornbusch T, Michaud O, Xenarios I, Fankhauser C (2014) Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation. Plant Cell 26:3911–3921. https://doi.org/10.1105/tpc.114.129031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downes BP, Crowell DN (1998) Cytokinin regulates the expression of a soybean β-expansin gene by a posttranscriptional mechanism. Plant Mol Biol 37:437–444

    CAS  PubMed  Google Scholar 

  • Droc G, Larivière D, Guignon V, Yahiaoui N, This D, Garsmeur O, Dereeper A, Hamelin C, Argout X et al (2013) The banana genome Hub. Database 2013:bat35. https://doi.org/10.1093/database/bat035

    Article  CAS  Google Scholar 

  • FAO (2020) Medium-term Outlook: Prospects for global production and trade in bananas and tropical fruits 2019 to 2028. Rome

  • Feng X, Xu Y, Peng L, Yu X, Zhao Q, Feng S, Zhao Z, Li F, Hu B (2019) TaEXPB7-B, abeta-expansin gene involved in low-temperature stress and abscisic acid responses, promotes growth and cold resistance in Arabidopsis thaliana. J Plant Physiol 240:153004

    CAS  PubMed  Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill P, Heger A et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    CAS  PubMed  Google Scholar 

  • Fudali S, Sobczak M, Janakowski S, Griesser M, Grundler FM, Golinowski W (2008) Expansins are among plant cell wall modifying agents specifically expressed during development of nematode-induced syncytia. Plant Signal Behav 3(11):969–971

    PubMed  PubMed Central  Google Scholar 

  • Fukuda H (2014) Plant cell wall patterning and cell shape. Wiley, Hoboken

    Google Scholar 

  • Guimaraes LA, Mota APZ, Araujo ACG et al (2017a) Genome-wide analysis of expansin superfamily in wild Arachis discloses a stress-responsive expansin-like B gene. Plant Mol Biol 94:79–96. https://doi.org/10.1007/s11103-017-0594-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guimaraes LA, Mota APZ, Araujo de Alencar ACG, Figueiredo LF, Pereira BM, de Passos Saraiva MA et al (2017b) Genome-wide analysis of expansin superfamily in wild Arachis discloses a stress-responsive expansin-like B gene. Plant Mol Biol l94(1–2):79–96

    Google Scholar 

  • Guo W, Zhao J, Li X, Qin L, Yan X, Liao H (2011) A soybean bexpansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J 66(3):541–552

    CAS  PubMed  Google Scholar 

  • Han Y, Chen YH, Yin SH, Zhang M, Wang W (2015) Over-expression of TaEXPB23, a wheat expansin gene, improves oxidative stress tolerance in transgenic tobacco plants. J Plant Physiol 173:62–71

    CAS  PubMed  Google Scholar 

  • Han QH, Huang B, Ding CB, Zhang ZW, Chen YE, Hu C, Zhou LJ, Huang Y, Liao JQ, Yuan S (2017) Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings. Front Plant Sci 8:785

    PubMed  PubMed Central  Google Scholar 

  • Han Z, Liu Y, Deng X, Liu D, Liu Y, Hu Y, Yan Y (2019) Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.). BMC Genom 20(1):101. https://doi.org/10.1186/s12864-019-5455-1

    Article  Google Scholar 

  • Hemalatha N, Rajesh MK, Narayanan NK (2011) Genome-wide analysis and identification of genes related to expansin gene family in indica rice. Int J Bioinform Res Appl 7(2):162–167. https://doi.org/10.1504/IJBRA.2011.040094

    Article  CAS  PubMed  Google Scholar 

  • Ithal N, Recknor J, Nettleston D, Nettleton D, Maier T, Baum TJ, Mitchum MG (2007) Parallel genome-wide expression profiling of host and pthaogen during soybean cyst nematode infection of soybean. Mol Plant Microbe Interact 20:510–525

    CAS  PubMed  Google Scholar 

  • Jin KM, Zhuo RY, Xu D, Wang YJ, Fan HJ, Huang BY, Qiao GR (2020) Genome-wide identification of the expansin gene family and its potential association with drought stress in moso bamboo. Int J MolSci 21(24):9491. https://doi.org/10.3390/ijms21249491 (PMID: 33327419)

    Article  CAS  Google Scholar 

  • Jo BS, Choi SS (2015) Introns: the functional benefits of introns in genomes. Genom Inform 13(4):112–118. https://doi.org/10.5808/GI.2015.13.4.112

    Article  Google Scholar 

  • Kaliyappan R, Viswanathan S, Suthanthiram B, Subbaraya U, Marimuthu Somasundram S, Muthu M (2016) Evolutionary expansion of WRKY gene family in banana and its expression profile during the infection of root lesion nematode, Pratylenchus coffeae. PLoS ONE 11(9):e0162013. https://doi.org/10.1371/journal.pone.0162013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klink VP, Overall CC, Alkharouf N, MacDonald MH, Matthews BF (2007) A time-course comparative microarray analysis of an incompatible and compatible response by Glycine max (soybean) to Heterodera glycines (soybean cyst nematode). Planta 226:1423–1447

    CAS  PubMed  Google Scholar 

  • Krishnamurthy P, Muthusamy M, Kim JA et al (2019) Brassica rapa expansin-like B1 gene (BrEXLB1) regulate growth and development in transgenic Arabidopsis and elicits response to abiotic stresses. J Plant Biochem Biotechnol 28:437–446

    CAS  Google Scholar 

  • Kuluev BR, Knyazev AB, Lebedev YP, Chemeris AV (2012) Morphological and physiological characteristics of transgenic tobacco plants expressing expansin genes: AtEXP10 from Arabidopsis and PnEXPA1 from poplar. Russ J Plant Physiol 59(1):97–104

    CAS  Google Scholar 

  • Kuluev BR, Safiullina MG, Knyazev AV, Chemeris AV (2013) Effect of ectopic expression of NtEXPA5 gene on cell size and growth of organs of transgenic tobacco plants. Russ J Dev Biol 44(1):28–34

    CAS  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon YR, Lee HJ, Kim KH, Hong SW, Lee SJ, Lee H (2008) Ectopic expression of expansin3 or expansin beta1 causes enhanced hormone and salt stress sensitivity in Arabidopsis. Biotechnol Lett 30(7):1281–1288

    CAS  PubMed  Google Scholar 

  • Lan T, Yang ZL, Yang X, LiuYJ WXR, Zeng QY (2009) Extensive functional diversification of the populus glutathione S-transferase supergene family. Plant Cell 21:3749–3766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    CAS  PubMed  Google Scholar 

  • Lee Y, Kende H (2001) Expression of beta-expansins is correlated with inter nodal elongation in deep water rice. Plant Physiol 127(2):645–654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HW, Kim J (2013) EXPANSINA17 up-regulated by LBD18/ASL20 promotes lateral root formation during the auxin response. Plant Cell Physiol 54(10):1600–1611

    CAS  PubMed  Google Scholar 

  • Lee DK, Ahn JH, Song SK, Do CY, Lee JS (2003) Expression of an expansin gene is correlated with root elongation in soybean. Plant Physiol 131(3):985–997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lescot M, Piffanelli P, Ciampi AY, Ruiz M, Blanc G, Leebens-Mack J, da Silva FR, Santos CM, Dhont A, Garsmeur O, Vilarinhos AD (2008) Insights into the Musa genome: syntenic relationships to rice and between Musa species. BMC Genom 9:58

    Google Scholar 

  • Li F, Xing SC, Guo QF, Zhao MR, Zhang J, Gao Q et al (2011a) Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco. J Plant Physiol 168:960–966

    CAS  PubMed  Google Scholar 

  • Li Z, Zhang L, Yu Y, Quan R, Zhang Z, Zhang H et al (2011b) The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis. Plant J 68:88–89

    CAS  PubMed  Google Scholar 

  • Li F, Han Y, Feng Y, Xing S, Zhao M, Chen Y, Wang W (2013) Expression of wheat expansin driven by the RD29 promoter in tobacco confers water-stress tolerance without impacting growth and development. J Biotechnol 163(3):281–291

    CAS  PubMed  Google Scholar 

  • Li AX, Han YY, Wang X, Chen YH, Zhao MR, Zhou SM et al (2015) Root-specific expression of wheat expansin gene TaEXPB23 enhances root growth and water stress tolerance in tobacco. Environ Exp Bot 110:73–84

    CAS  Google Scholar 

  • Li Y, Tu L, Pettolino FA, Ji S, Hao J, Yuan D, Deng F, Tan J, Hu H, Wang Q, Llewellyn DJ, Zhang X (2016ab) GbEXPATR, a species-specific expansin, enhances cotton fibre elongation through cell wall restructuring. Plant Biotechnol J 14(3):951–963. https://doi.org/10.1111/pbi.12450

    Article  CAS  PubMed  Google Scholar 

  • Li NN, Pu YY, Gong YC, Yu YL, Ding HF (2016ba) Genomic location and expression analysis of expansin gene family reveals the evolutionary and functional significance in Triticum aestivum. Genes Genom 38(11):1021–1030

    CAS  Google Scholar 

  • Lin L, Cheng YB, Pu YQ, Sun S, Li X, Jin MJ, Pierson EA, Gross DC, Dale BE, Dai SY, Ragauskas AJ, Yuan S (2016) Systems biology-guided biodesign of consolidated lignin conversion. Green Chem 18:5536–5547. https://doi.org/10.1039/C6GC01131D

    Article  CAS  Google Scholar 

  • Lü P, Kang M, Jiang X et al (2013) RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Planta 237:1547–1559. https://doi.org/10.1007/s00425-013-1867-3

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Liu L, Wang X, Han Z, Ouyang B, Zhang J, Li H (2016) Genome-wide identification and expression analysis of the expansin gene family in tomato. Mol Gene Genom 291(2):597–608. https://doi.org/10.1007/s00438-015-1133-4

    Article  CAS  Google Scholar 

  • Lv L, Zuo D, Wang X, Cheng H, Zhang Y, Wang Q, Song G, Ma Z (2020) Genome-wide identification of the expansin gene family reveals that expansin genes are involved in fibre cell growth in cotton. BMC Plant Biol. https://doi.org/10.1186/s12870-020-02362-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    CAS  PubMed  Google Scholar 

  • Ma N, Wang Y, Qiu S, Kang Z, Che S, Wang G, Huang J (2013) Overexpression of OsEXPA8, a root-specific gene, improves rice growth and root system architecture by facilitating cell extension. PLoS ONE 8(10):e75997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marowa P, Ding A, Kong Y (2016) Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep 35:949–965. https://doi.org/10.1007/s00299-016-1948-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazumdar P, Lau SE, Wee WY, Singh P, Harikrishna JA (2017) Genome-wide analysis of the CCCH zinc-finger gene family in banana (Musa acuminata): an insight in to motif and gene structure arrangement, evolution and salt stress responses. Trop Plant Biol 10(4):177–193. https://doi.org/10.1007/s12042-017-9196-5

    Article  CAS  Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minoia S, Boualem A, Marcel F, Troadec C, Quemener B, Cellini F, Bendahmane A (2015) Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening. Plant Sci 242:1–8

    Google Scholar 

  • Mollet JC, Leroux C, Dardelle F, Lehner A (2013) Cell wall composition, biosynthesis and remodeling during pollen tube growth. Plants 2(1):107–147

    PubMed  PubMed Central  Google Scholar 

  • Muthusamy M, Uma S, Backiyarani S, Saraswathi MS, Chandrasekar A (2016) Transcriptomic changes of drought-tolerant and sensitive banana cultivars exposed to drought stress. Front Plant Sci 7:1609. https://doi.org/10.3389/fpls.2016.01609

    Article  PubMed  PubMed Central  Google Scholar 

  • Muthusamy M, Kim JY, Yoon EK, Kim JA, Lee SI (2020) BrEXLB1, a Brassica rapa expansin-like B1 gene is associated with root development, drought stress response, and seed germination. Genes (basel) 11(4):404. https://doi.org/10.3390/genes11040404

    Article  CAS  Google Scholar 

  • Nansamba M, Sibiya J, Tumuhimbise R, Karamura D, Kubiriba J, Karamura E (2020) Breeding banana (Musa spp.) for drought tolerance: a review. Plant Breed 139(4):685–696. https://doi.org/10.1111/pbr.12812

    Article  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  • Palapol Y, Kunyamee S, Thongkhum M, Ketsa S, Ferguson IB, VanDoorn WG (2015) Expression of expansin genes in the pulp andthe dehiscence zone of ripening durian (Durio zibethinus) fruit. J Plant Physiol 182:33–39

    CAS  PubMed  Google Scholar 

  • Pérez-Vicente L, Carreel F, Roussel V, Carlier J, Abadie C (2021) Pseudocercospora guidelines for the evaluation of resistance to leaf spots of banana. In: Dita M (ed) Practical guidelines for early screening and field evaluation of banana against Fusarium wilt, Pseudocercospora leaf spots and drought. Bioversity International, Montpellier (France), p 83

    Google Scholar 

  • Pezzotti M, Feron R, Mariani C (2002) Pollination modulates expression of the PPAL gene, a pistil-specific β-expansin. Plant Mol Biol 49:187–197

    CAS  PubMed  Google Scholar 

  • Pien S, Wyrzykowska J, Mcqueenmason S, Smart C, Fleming A (2001a) Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc Natl Acad Sci USA 98:11812–11817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming A (2001b) Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc Natl Acad Sci USA 98(20):11812–11817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravi I, Uma S (2011) Phenotyping bananas and plantains for adaptation to drought. In: Philippeand M, Jean-Marcel R (eds) Drought phenotyping in crops: from theory to practice. CGIAR Generation Challenge Programme/CIMMYT, Texcoco

    Google Scholar 

  • Ren Y, Chen Y, An J, Zhao Z, Zhang G, Wang Y, Wang W (2018) Wheat expansin gene TaEXPA2 is involved in conferring plant tolerance to Cd toxicity. Plant Sci 270:245

    CAS  PubMed  Google Scholar 

  • Rogers JH (1990) The role of introns in evolution. FEBS Lett 268(2):339–343. https://doi.org/10.1016/0014-5793(90)81282-s

    Article  CAS  PubMed  Google Scholar 

  • Rose JK, Lee HH, Bennett AB (1997) Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc Natl Acad Sci USA 94(11):5955–5960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rose JKC, Cosgrove DJ, Albersheim P, Darvill AG, Bennett AB (2000) Detection of expansin proteins and activity during tomato fruit ontogeny. Plant Physiol 123(4):1583–1592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6:242

    PubMed  PubMed Central  Google Scholar 

  • Sampedro J, Carey RE, Cosgrove DJ (2006) Genome histories clarify evolution of the expansin superfamily: new insights from the poplar genome and pine ESTs. J Plant Res 119(1):11–21. https://doi.org/10.1007/s10265-005-0253-z

    Article  CAS  PubMed  Google Scholar 

  • Sampedro J, Guttman M, Li LC, Cosgrove DJ (2015) Evolutionary divergence of β-expansin structure and function in grasses parallels emergence of distinctive primary cell wall traits. Plant J 81(2015):108–120

    CAS  PubMed  Google Scholar 

  • Santiago TR, Pereira VM, de Souza WR, Steindorff AS, Cunha BADB, Gaspar M et al (2018) Genome-wide identification, characterization and expression profile analysis of expansins gene family in sugarcane (Saccharum spp.). PLoS ONE 13(1):e0191081. https://doi.org/10.1371/journal.pone.0191081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santini L, MunhozCde F, Bonfim MF Jr, Brandão MM, Inomoto MM, Vieira ML (2016) Host transcriptional profiling at early and later stages of the compatible interaction between Phaseolus vulgaris and Meloidogyne incognita. Phytopathology 106(3):282–294. https://doi.org/10.1094/PHYTO-07-15-0160-R

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar AS, Uma S, Thangavelu R, Backiyarani S, Saraswathi MS, Sriram V (2016) Preliminary analysis on the transcripts involved in resistance responses to eumusae leaf spot disease of banana caused by Mycosphaerella eumusae, a recent add-on of the sigatoka disease complex. Turk J Bot 40:461–471

    CAS  Google Scholar 

  • Sasidharan R, Chinnappa CC, Voesenek LA, Pierik R (2008) The regulation of cell wall extensibility during shade avoidance: a study using two contrasting ecotypes of Stellaria longipes. Plant Physiol 148:1557–1569. https://doi.org/10.1104/pp.108.125518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin JH, Jeong DH, Park MC, An G (2005) Characterization and transcriptional expression of the alpha-expansin gene family in rice. Mol Cells 20(2):210–218

    CAS  PubMed  Google Scholar 

  • Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  • Tirumalaraju SV, Jain M, Gallo M (2011) Differential gene expression in roots of nematode-resistant and -susceptible peanut (Arachis hypogaea) cultivars in response to early stages of peanut root-knot nematode (Meloidogyne arenaria) parasitization. J Plant Physiol 168:481–492

    CAS  PubMed  Google Scholar 

  • Trivedi PK, Nath P (2004) MaExp1, an ethylene-induced expansin from ripening banana fruit. Plant Sci 167(6):1351–1358. https://doi.org/10.1016/j.plantsci.2004.07.005

    Article  CAS  Google Scholar 

  • Tucker MR, Koltunow AM (2014) Traffic monitors at the cell periphery: the role of cell walls during early female reproductive cell differentiation in plants. Curr Opin Plant Biol 17:137–145. https://doi.org/10.1016/j.pbi.2013.11.0

    Article  CAS  PubMed  Google Scholar 

  • Van Den Berg N, Berger DK, Hein I, Birch PR, Wingfield MJ, Viljoen A (2007) Tolerance in banana to Fusarium wilt is associated with early up-regulation of cell wall-strengthening genes in the roots. Mol Plant Pathol 8(3):333–341. https://doi.org/10.1111/j.1364-3703.2007.00389.x

    Article  CAS  PubMed  Google Scholar 

  • Wang RK, Li LL, Cao ZH, Zhao Q, Li M, Zhang LY, Hao YJ (2012) Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Mol Biol 79(1–2):123–135

    CAS  PubMed  Google Scholar 

  • Wang Y, Xia Q, Wang G, Zhang H, Lu X, Sun J, Zhang X (2017) Differential gene expression in banana roots in response to Fusarium wilt. Can J Plant Pathol 39(2):163–175. https://doi.org/10.1080/07060661.2017.1342693

    Article  CAS  Google Scholar 

  • Wei PC, Zhang XQ, Zhao P, Wang XC (2011) Regulation of stomatal opening by the guard cell expansin AtEXPA1. Plant Signal Behav 6:740–742. https://doi.org/10.4161/psb.6.5.15144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieczorek K, Golecki B, Gerdes L, Heinen P, Szakasits D, Durachko DM, Cosgrove DJ, Kreil DP, Puzio PS, Bohlmann H, Grundler FM (2006) Expansins are involved in the formation of nematode-induced syncytia in roots of Arabidopsis thaliana. Plant J 48(1):98–112. https://doi.org/10.1111/j.1365-313X.2006.02856.x

    Article  CAS  PubMed  Google Scholar 

  • Won S, Choi S, Kumari S, Cho M, Lee SH, Cho H (2010) Root hair specific EXPANSIN B genes have been selected for Graminaceae root hairs. Mol Cells 30(4):369–376

    CAS  PubMed  Google Scholar 

  • Wu YJ, Sharp RE, Durachko DM, Cosgrove DJ (1996) Growth maintenance of the maize primary root at low water potential involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins. Plant Physiol 111:765–772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YJ, Thorne ET, Sharp RE, Cosgrove DJ (2001) Modification of expansin transcript levels in the maize primary root at low water potentials. Plant Physiol 126:1471–1479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu B, Yang Z (2013) PAMLX: a graphical user interface for PAML. Mol Biol Evol 30(12):2723–2724. https://doi.org/10.1093/molbev/mst179

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Xu X, Shi Y, Xu J, Huang B (2014) Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress. PLoS ONE 9:e100792

    PubMed  PubMed Central  Google Scholar 

  • Yan A, Wu M, Yan L, Hu R, Ali I, Gan Y (2014) AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis. PLoS ONE 9:e85208

    PubMed  PubMed Central  Google Scholar 

  • Yang L, Wang S, Lu H, Liu L, Sa R (2020) Effects of dissociation water retention on pore structure disintegration in hydrate sediments. Front Energy Res 8:599542. https://doi.org/10.3389/fenrg.2020.599542

    Article  Google Scholar 

  • Yu Z, Kang B, He X, Lv S, Bai Y, Ding W, Wu P (2011) Root hair specific expansins modulate root hair elongation in rice. Plant J 66(5):725–734

    CAS  Google Scholar 

  • Yuan M-L, Zhang Q-L, Guo Z-L, Wang J, Shen Y-Y, Shao R (2015) The complete mitochondrial genome of corizus tetraspilus (Hemiptera: Rhopalidae) and phylogenetic analysis of pentatomomorpha. PLOS ONE 10(6):e0129003. https://doi.org/10.1371/journal.pone.0129003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Yan H, Chen W, Liu J, Jiang C, Jiang H et al (2014) Genome-wide identification and characterization of maize expansin genes expressed in endosperm. Mol Genet Genom 289(6):1061–1074

    CAS  Google Scholar 

  • Zhang H, Liu H, Yang R, Xu X, Liu X, Xu J (2019) Over-expression of PttEXPA8 gene showed various resistances to diverse stresses. Int J Biol Macromol 130:50–57

    CAS  PubMed  Google Scholar 

  • Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5:334–338. https://doi.org/10.1093/mp/ssr104

    Article  CAS  PubMed  Google Scholar 

  • Zhao MR, Li F, Fang Y, Gao Q, Wang W (2011) Expansin-regulated cell elongation is involved in the drought tolerance in wheat. Protoplasma 248(2):313–323

    PubMed  Google Scholar 

  • Zhou J, Xie J, Liao H, Wang X (2014) Overexpression of b-expansin gene GmEXPB2 improves phosphorus efficiency in soybean. Physiol Plant 150(2):194–204

    CAS  PubMed  Google Scholar 

  • Zhou S, Han Y, Chen Y, Kong X, Wang W (2015) The involvement of expansins in response to water stress during leaf development in wheat. J Plant Physiol 183:64–74

    CAS  PubMed  Google Scholar 

  • Zorb C, Muhling KH, Kutschera U, Geilfus CM (2015) Salinity stiffens the epidermal cell walls of salt-stressed maize leaves: is the epidermis growth-restricting? PLoS ONE 10:e0118406. https://doi.org/10.1371/journal.pone.0118406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Indian Council of Agricultural Research (ICAR), India under the project NPFGGM-Functional Genomics (3020). We express our sincere gratitude to Director, ICAR-National Research Centre for Banana, India for the facilities provided for this project.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, resources, writing, and overall monitoring: SBR. Draft preparation, review and editing: CA. Sample preparation and analysis: RT, PG, and MM. Methodology, in silico analysis, work design, and formatting: ACS. qRT-PCR work and data analysis: BR and PSK. Supervision, conceptualization, and project administration: SU.

Corresponding author

Correspondence to Suthanthiram Backiyarani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 Supplementary file 1 Expansin gene family in banana A & B genome (XLSX 27 KB)

Supplementary file2 Supplementary file 2 Nomenclature of expansin genes in Musa A & B genome (XLSX 13 KB)

Supplementary file3 Supplementary file 3 Motif analysis for Expansin genes in Musa A & B genome (XLSX 14 KB)

Supplementary file4 Supplementary file 4 Synonymous and nonsynonymous substitution of MbEXPs (XLSX 14 KB)

13205_2021_3106_MOESM5_ESM.xlsx

Supplementary file5 Supplementary file 5 Cis acting elements from Expansin gene family promoters of banana A & B genome (XLSX 58 KB)

13205_2021_3106_MOESM6_ESM.xlsx

Supplementary file6 Supplementary file 6 Digital Gene Expression details of MaEXPs between resistant and susceptible cultivars under Sigatoka & Nematode and Drought stress. (XLSX 19 KB)

Supplementary file7 Table S1 Number of expansin genes in five plant species (DOCX 13 KB)

Supplementary file8 Table S2 Synteny relationship between Musa acuminate and Arabidopsis thaliana. (DOCX 21 KB)

Supplementary file9 Table S3 qRT-PCR Primers for the validation of MaEXPs in biotic and abiotic stresses (DOCX 14 KB)

Supplementary file10 Table S4 Expression details of Expansin gene in other crops (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Backiyarani, S., Anuradha, C., Thangavelu, R. et al. Genome-wide identification, characterization of expansin gene family of banana and their expression pattern under various stresses. 3 Biotech 12, 101 (2022). https://doi.org/10.1007/s13205-021-03106-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-03106-x

Keywords

Navigation