Skip to main content
Log in

Analysis of symbiotic genes of leguminous root nodule bacteria grown in the southern urals

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Bacterial strains isolated from the nodules, tissues, and root surface of wild legumes growing in the Southern Urals related to the tribes Galegeae, Hedysareae, Genisteae, Trifolieae, and Loteae were examined for the presence in their genomes of symbiotic (sym) genes. It was found that the sym-genes are present in microorganisms isolated only from the nodules of the analyzed plants (sym + strains). Phylogenetic analysis of sym + strains on the basis of a comparative analysis of 16S rRNA gene sequences showed that sym + strains belong to five families of nodule bacteria: Mesorhizobium, Bradyrhizobium, Sinorhizobium, Rhizobium, and Phyllobacterium. A study the phylogeny of the sym-genes showed that the nodule bacteria of leguminous plants of the Southern Urals at the genus level are mainly characterized by a parallel evolution of symbiotic genes and the 16S rRNA gene. Thus, cases of horizontal transfer of sym genes, which sometimes leads to the formation of certain types of atypical rhizobial strains of leguminous plants, are detected in nodule bacteria populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zakhia, F., Jeder, H., Domergue, O., et al., Characterization of wild legume nodulating bacteria (LNB) in the infra-arid zone of Tunisia, Syst. Appl. Microbiol., 2004, vol. 27, pp. 380–395.

    Article  PubMed  Google Scholar 

  2. Moulin, L., Munive, A., Dreyfus, B., and Boivin-Maßson, C., Nodulation of legumes by members of the ß-sb class of Proteobacteria, Nature, 2001, vol. 41, pp. 948–950.

    Article  Google Scholar 

  3. Provorov, N.A., Evolution of symbiotic genetic systems in rhizobia, Russ. J. Genet., 1996, vol. 32, no. 8, pp. 891–900.

    CAS  Google Scholar 

  4. Franche, C., Lindström, K., and Elmerich, C., Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants, Plant Soil, 2009, vol. 321, pp. 35–59.

    Article  CAS  Google Scholar 

  5. Ovtsyna, A.O. and Tikhonovich, I.A., Structure, functions, and perspectives of practical application of the signal molecules inducing development of rhizobia–legume symbiosis, Ekol. Genet., 2004, vol. 2, no. 3, pp. 14–24.

    Google Scholar 

  6. Brewin, N.J., Plant cell wall remodeling in the Rhizobium–legume symbiosis, Crit. Rev. Plant Sci., 2004, vol. 23, pp. 1–24.

    Article  Google Scholar 

  7. Roche, P., Maillet, F., Plazanet, C., et al., The common nodABC genes of Rhizobium meliloti are host-range determinants, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 15305–15310.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Yang, G.P., Debellé, F., Savagnac, A., et al., Structure of the Mesorhizobium huakuii and Rhizobium galegae Nod factors: a cluster of phylogenetically related legumes are nodulated by rhizobia producing nod factors with alpha, beta-unsaturated N-acyl substitutions, Mol. Microbiol., 1999, vol. 34, pp. 227–237.

    Article  CAS  PubMed  Google Scholar 

  9. Ferguson, B.J., Indrasumunar, A., Hayashi, S., et al., Molecular analysis of legume nodule development and autoregulation, J. Integr. Plant Biol., 2010, vol. 52, no. 1, pp. 61–76.

    Article  CAS  PubMed  Google Scholar 

  10. Mergaert, P., Montagu, M., Promé, J.C., and Holsters, M., Three unusual modifications, a D-arabinosyl, an N-methyl, and a carbamoyl group, are present on the Nod factors of Azorhizobium caulinodans strain ORS571, Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, pp. 1551–1555.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Provorov, N.A. and Vorob’ev, N.I., The role of horizontal gene transfer in the evolution of nodule bacteria, directed by host plant, Usp. Sovrem. Biol., 2010, vol. 130, no. 4, pp. 336–345.

    Google Scholar 

  12. Fischer, H.M., Genetic regulation of nitrogen fixation in rhizobia, Microbiol. Rev., 1994, vol. 58, pp. 352–386.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Provorov, N.A. and Vorob’ev, N.I., Evolutionary genetics of nodule bacteria: molecular and population aspects, Russ. J. Genet., 2000, vol. 36, no. 12, pp. 1323–1335.

    Article  CAS  Google Scholar 

  14. Sullivan, J.T., Patrick, H.N., Lowther, W.L., et al., Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment, Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, pp. 8985–8989.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Chen, L.A., Figueredo, A., Pedrosa, F.O., and Hungria, M., Genetic characterization of soybean rhizobia in Paraguay, Appl. Environ. Microbiol., 2000, vol. 66, pp. 5099–5103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Nandasena, K.G., O’Hara, G.W., Tiwari, R.P., and Howieson, J.G., Rapid in situ evolution of nodulating strains for Biserrula pelecinus L. through lateral transfer of a symbiosis island from the original mesorhizobial inoculant, Appl. Environ. Microbiol., 2006, vol. 72, no. 11, pp. 7365–7367.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Andam, C.P., Mondo, S.J., and Parker, M.A., Monophyly of nodA and nifH genes across Texan and Costa Rican populations of Cupriavidus nodule symbionts, Appl. Environ. Microbiol., 2007, vol. 73, no. 14, pp. 4684–4690.

    Google Scholar 

  18. Barcellos, F.G., Menna, P., Batista, J.S., and Hungria, M., Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian savannah soil, Appl. Environ. Microbiol., 2007, vol. 73, no. 8, pp. 2635–2643.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Zhao, C.T., Wang, E.T., Chen, W.F., and Chen, W.X., Diverse genomic species and evidences of symbiotic gene lateral transfer detected among the rhizobia associated with Astragalus species grown in the temperate regions of China, FEMS Microbial. Lett., 2008, vol. 286, pp. 263–273.

    Article  CAS  Google Scholar 

  20. Bailly, X., Olivieri, I., Brunel, B., et al., Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen-fixing symbionts of Medicago species, J. Bacteriol., 2007, vol. 189, pp. 5223–5236.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Freiberg, C., Fellay, R., Bairoch, A., et al., Molecular basis of symbiosis between Rhizobium and legumes, Nature, 1997, vol. 387, pp. 394–401.

    Article  CAS  PubMed  Google Scholar 

  22. Estrella, M.J., Munoz, S., Soto, M.J., et al., Genetic diversity and host range of rhizobia nodulating Lotus tenuis in typical soils of the Salado river Basin (Argentina), Appl. Environ. Microbiol., 2009, vol. 75, no. 4, pp. 1088–1098.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Marchetti, M., Capela, D., Glew, M., et al., Experimental evolution of a plant pathogen into a legume symbiont, PLoS Biol., 2010, vol. 8, no. 1. e1000280

  24. Zaneveld, J.R., Nemergut, D.R., and Knight, R., Are all horizontal gene transfers created equal? Prospects for mechanism-based studies of HGT patterns, Microbiology, 2008, vol. 154, pp. 1–15.

    Article  CAS  PubMed  Google Scholar 

  25. Provorov, N.A. and Vorobyov, N.I., Evolution of symbiotic bacteria in “plant–soil” systems: interplay of molecular and population mechanisms, in Progress in Environmental Microbiology, Kim, M.-B., Ed., NewYork: Nova Sci. Publ., 2008, pp. 11–67.

    Google Scholar 

  26. Vincent, J.M., A Manual for the Practical Study of Root Nodule Bacteria, Oxford: Blackwell, 1970.

    Google Scholar 

  27. Baimiev, An.Kh., Ptitsyn, K.G., and Baimiev, Al.Kh., Influence of the introduction of Caragana arborescens on the composition of its root-nodule bacteria, Microbiology (Moscow), 2010, vol. 79, no. 1, pp. 115–120.

    Article  Google Scholar 

  28. Baimiev, An.Kh., Ptitsyn, K.G., Muldashev, A.A., and Baimiev, Al.Kh., Genetic description of root nodule bacteria of Lathyrus species growing in the territory of the Republic of Bashkortostan, Ekol. Genet., 2011, vol. 9, no. 2, pp. 3–8.

    Google Scholar 

  29. Knosel, D.H., Prufung von Bakterien auf Fahigkeit zur Sternbildung, Zentralbl. Bakteriol., Parasitenkd., Infektionskrankh. Hyg., 1962, vol. 116, pp. 79–100.

    Google Scholar 

  30. Valverde, A., Velazquez, E., Fernandez-Santos, F., et al., Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 1985–1989.

    Article  CAS  PubMed  Google Scholar 

  31. Mantelin, S., Saux, M.F., Zakhia, F., et al., Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov., Int. J. Syst. Evol. Microbiol., 2006, vol. 56, pp. 827–839.

    Article  CAS  PubMed  Google Scholar 

  32. Baimiev, Al.Kh., Baimiev, An.Kh., Gubaidullin, I.I., et al., Bacteria closely related to Phyllobacterium trifolii according to their 16S rRNA gene are discovered in the nodules of Hungarian sainfoin, Russ. J. Genet., 2007, vol. 43, no. 5, pp. 587–590.

    Article  CAS  Google Scholar 

  33. Baimiev, An.Kh., Ivanova, E.S., Ptitsyn, K.G., et al., Genetic characterization of wild legume nodule bacteria of the Southern Urals, Mol. Genet. Microbiol. Virol., 2012, vol. 27, no. 1, pp. 33–39.

    Article  Google Scholar 

  34. Lei, X., Wang, E.T., Chen, W.F., et al., Diverse bacteria isolated from root nodules of wild Vicia species in temperate region of China, Arch. Microbiol., 2008, vol. 190, pp. 657–671.

    Article  CAS  PubMed  Google Scholar 

  35. Bromfield, E.S.P., Tambong, J.T., Cloutier, S., et al., Ensifer, Phyllobacterium and Rhizobium species occupy nodules of Medicago sativa (alfalfa) and Melilotus alba (sweet clover) grown at a Canadian site without a history of cultivation, Microbiology, 2010, vol. 156, pp. 505–520.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An. Kh. Baymiev.

Additional information

Original Russian Text © An.Kh. Baymiev, E.S. Ivanova, R.S. Gumenko, O.V. Chubukova, Al.Kh. Baymiev, 2015, published in Genetika, 2015, Vol. 51, No. 12, pp. 1359–1367.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baymiev, A.K., Ivanova, E.S., Gumenko, R.S. et al. Analysis of symbiotic genes of leguminous root nodule bacteria grown in the southern urals. Russ J Genet 51, 1172–1180 (2015). https://doi.org/10.1134/S1022795415110034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415110034

Keywords

Navigation