Skip to main content
Log in

Evaluation of Barley lncRNAs Expression Analysis in Salinity Stress

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Long noncoding RNAs (lncRNAs) act important roles in a wide range of biological processes. The regulatory roles of lncRNAs are still poorly understood. One of the major problems of limiting plant productivity is the salinity in the worldwide that barley (Hordeum vulgare L.) seems to be relatively well adapted to salinity environments. The aim of this study is the investigation of lncRNAs’ expression levels on four barley genotypes (Hasat, Beysehir 99, Konevi 98 and Tarm 92) to 150 mM salt stress application during 3 days germination. Grains were placed randomly in petri dishes containing filter paper soaked in (a) only H2O (control), (b) 150 mM NaCl for 72 h. RNA extraction were carried out using TriPure® reagent from root and shoot samples obtained after 150 mM salt treatment. Expression levels of CNT0018772 and CNT0031477 were determined by qPCR. Expression analysis demonstrated salinity effected expression levels of CNT0018772 and CNT0031477 on roots and shoots during germination. The expression levels of CNT0018772 for 150 mM salt applied groups were down-regulated raged between (log2–0.52 and–35.65) compared controls on roots and shoot. The expression levels of CNT0031477 in 150 mM salt applied groups were also down-regulated ranged between (log2–10.40 and 33.59) compared controls on roots and shoot except for Tarm 92 variety. On the contrary, expression levels of CNT0031477 were up-regulated on root and shoot of Tarm 92. Comparison of CNT0018772 and CNT0031477 expression levels on roots, there was no significant difference between barley varieties compared to controls (p > 0.05). However, it was found there was statistically significant difference between 150 mM salt treatment and control groups for CNT0031477 expression levels (p < 0.05). It was determined Konevi 98 shoot control expression level was statistically higher than Tarm 92 shoot control. This is the first report about the lncRNAs expression levels of barley under salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maeda, N., Kasukawa, T., Oyama, R., et al., Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs, PLoS Genet., 2006, vol. 2, no. 4. e62

    Google Scholar 

  2. Taft, R.J., Pheasant, M., and Mattick, J.S. The relationship between nonprotein-coding DNA and eukaryotic complexity, Bioessays, 2007, vol. 29, no. 3, pp. 288–299.

    Article  CAS  PubMed  Google Scholar 

  3. Jacquier, A., The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs, Nat. Rev. Genet., 2009, vol. 10, no. 12, pp. 833–844.

    Article  CAS  PubMed  Google Scholar 

  4. Khachane, A.N. and Harrison, P.M., Mining mammalian transcript data for functional long non-coding RNAs, PLoS One, 2010, vol. 5, no. 4, e10316.

    Google Scholar 

  5. Ravasi, T., Suzuki, H., Pang, K.C., et al., Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome, Genome Res., 2006, vol. 16, no. 1, pp. 11–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Consortium, E.P., Birney, E., Stamatoyannopoulos, A., et al., Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project, Nature, 2007, vol. 447, no. 7146, pp. 799–816.

    Article  Google Scholar 

  7. Guttman, M., Amit, I., Garber, M., et al., Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals, Nature, 2009, vol. 458, pp. 223–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ponting, C.P., Oliver, P.L., and Reik, W. Evolution and functions of long noncoding RNAs, Cell, 2009, vol. 136, no. 4, pp. 629–641.

    Article  CAS  PubMed  Google Scholar 

  9. Harrow, J., Frankish, A., Gonzalez, J.M., et al., GENCODE: the reference human genome annotation for the ENCODE project, Genome Res., 2012, vol. 22, no. 9, pp. 1760–1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, K., Shi, Z.M., Chang, Y.N., et al., The ways of action of long non-coding RNAs in cytoplasm and nucleus, Gene, 2014, vol. 547, no. 1, pp. 1–9.

    Article  CAS  PubMed  Google Scholar 

  11. Atkinson, S.R., Marguerat, S., and Bahler, J. Exploring long non-coding RNAs through sequencing, Semin. Cell Dev. Biol., 2012, vol. 23, no. 2, pp. 200–205.

    Article  CAS  PubMed  Google Scholar 

  12. Devaux, Y., Zangrando, J., Schroen, B., et al., Long noncoding RNAs in cardiac development and ageing, Nat. Rev. Cardiol., 2015, vol. 12, no. 7, pp. 415–425.

    Article  CAS  PubMed  Google Scholar 

  13. Lepoivre, C., Belhocine, M., Bergon, A., et al., Divergent transcription is associated with promoters of transcriptional regulators, BMC Genomics, 2013, vol. 14, p. 914.

    Article  PubMed  PubMed Central  Google Scholar 

  14. De Santa, F., Barozzi, I., Mietton, F., et al., A large fraction of extragenic RNA pol II transcription sites overlap enhancers, PLoS Biol., 2010, vol. 8, no. 5. e1000384

    Google Scholar 

  15. Licastro, D., Gennarino, V.A., Petrera, F., et al., Promiscuity of enhancer, coding and non-coding transcription functions in ultraconserved elements, BMC Genomics, 2010, vol. 11, p. 151.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Smajgle, A., Toan, T.Q., Nhan, D.K., et al., Responding to rising sea levels in the Mekong Delta, Nat. Clim. Change, 2015, vol. 5, pp. 167–174.

    Article  Google Scholar 

  17. Munns, R. and Tester, M., Mechanisms of salinity tolerance, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 651–681.

    Article  CAS  PubMed  Google Scholar 

  18. Shahbaz, M. and Ashraf, M., Improving salinity tolerance in cereals, Crit. Rev. Plant Sci., 2013, vol. 32, pp. 237–249.

    Article  Google Scholar 

  19. Shelden, M.C., Dias, D.A., Jayasinghe, N.S., et al., Root spatial metabolite profiling of two genotypes of barley (Hordeum vulgare L.) reveals differences in response to short-term salt stress, J. Exp. Bot., 2016, vol. 67, pp. 3731–3745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xin, M., Wang, Y., Yao, Y., et al., Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing, BMC Plant Biol., 2011, vol. 11, p. 61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, E.D. and Sung, S., Long noncoding RNA: unveiling hidden layer of gene regulatory networks, Trends Plant Sci., 2012, vol. 17, pp. 16–21.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, Y.C., Liao, J.Y., Li, Z.Y., et al., Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice, Genome Biol., 2014, vol. 15, p. 512.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu, J., Jung, C., Xu, J., et al., Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis, Plant Cell, 2012, vol. 24, pp. 4333–4345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, L., Eichten, S.R., Shimizu, R., et al., Genomewide discovery and characterization of maize long noncoding RNAs, Genome Biol., 2014, vol. 15, p. R40.

  25. Lu, T., Zhu, C., Lu, G., et al., Strand-specific RNAseq reveals widespread occurrence of novel cis-natural antisense transcripts in rice, BMC Genomics, 2012, vol. 13, p. 721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Szcześniak, M.W., Rosikiewicz, W., and Makałowska, I., CANTATAdb: a Collection of Plant Long Non-Coding RNAs, Plant Cell Physiol., 2016, vol. 57, no. 1. e8.

    Article  PubMed  Google Scholar 

  27. Wu, J., Okada, T., Fukushima, T., et al., A novel hypoxic stress responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis, RNA Biol., 2012, vol. 9, pp. 302–313.

    Article  CAS  PubMed  Google Scholar 

  28. Cifuentes-Rojas, C., Nelson, A.D., Boltz, K.A., et al., An alternative telomerase RNA in Arabidopsis modulates enzyme activity in response to DNA damage, Genes Dev., 2012, vol. 26, pp. 2512–2523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krieg, J., Olivier, A.R., and Thomas, G. Analysis of 40S ribosomal protein S6 phosphorylation during the mitogenic response, Methods Enzymol., 1988, vol. 164, pp. 575–581.

    Article  CAS  PubMed  Google Scholar 

  30. Fumagalli, S. and Thomas, G., S6 phosphorylation and signal transduction, Translational Control of Gene Expression, Hershey, J.W.B., Mathews, M.B., and Sonenberg, N., Eds., Cold Spring Harbor: Cold Spring Harbor Lab., 2000, pp. 695–717.

    Google Scholar 

  31. Radimerski, T., Mini, T., Schneider, U., et al., Identification of insulin-induced sites of ribosomal protein S6 phosphorylation in Drosophila melanogaster, Biochemistry, 2000, vol. 39, pp. 5766–5774.

    Article  CAS  PubMed  Google Scholar 

  32. Reinhard, C., Fernandez, A., Lamb, N.J.C., and Thomas, G. Nuclear localization of p85s6k: functional requirement for entry into S phase, EMBO J., 1994, vol. 13, pp. 1557–1565.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jefferies, H.B.J., Fumagalli, S., Dennis, P.B., Reinhard, C., et al., Rapamycin suppresses 5TOP mRNA translation through inhibition of p70s6k, EMBO J., 1997, vol. 16, pp. 3693–3704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ulitsky, I., Shkumatava, A., Jan, C.H., et al., Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution, Cell, 2011, vol. 147, pp. 1537–1550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, X.T., Song, X.Y., Glass, C.K., and Rosenfeld, M.G. The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs, CSH Perspect. Biol., 2011, vol. 3, a003756

  36. Zhang, J., Mujahid, H., Hou, Y., et al., Plant long ncRNAs: a new frontier for gene regulatory control, Am. J. Plant Sci., 2013, vol. 4, pp. 1038–1045.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Karlik.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karlik, E., Gözükırmızı, N. Evaluation of Barley lncRNAs Expression Analysis in Salinity Stress. Russ J Genet 54, 198–204 (2018). https://doi.org/10.1134/S1022795418020096

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418020096

Keywords

Navigation