Skip to main content
Log in

Association of polymorphic markers of chemokine genes, their receptors, and CD14 gene with coronary atherosclerosis

  • Human Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Atherosclerosis represents an inflammatory response to the disturbance of the endothelial layer in the arterial bloodstream. In the present study, an analysis of associations of polymorphic markers for the genes controlling synthesis of proteins involved in atherosclerosis pathogenesis in coronary atherosclerosis (CA) patients (217 subjects) and in a control group (250 subjects) was conducted. The following genes were examined: rs991804 (CCL2 gene), rs1126579 (CXCR2 gene), rs4074 (CXCL1 gene), rs4073 (CXCL8 gene), rs333 (CCR5 gene), rs2471859 (CXCR4 gene), rs1801157 (CXCL12 gene), and rs2569190 (CD14 gene). Using the Monte Carlo and Markov chain (APSampler) method, allele/genotype combinations associated with both low and high CA risk were revealed. The most important findings included the following: CXCR4*T/T + CCL2*C + CCR5*I/I (P perm = 1 × 10–6, OR = 0.44, 95% CI 0.3–0.63), CXCR2*C + CD14*C + CXCL12*G + CCL2*C + CCR5*D (P perm = 4 × 10–6, OR = 5.78, 95% CI 2.34–14.28), CD14*C + CCL2*C/C + CCR5*D (P perm = 6.3 × 10–6, OR = 5.81, 95% CI 2.17–15.56), CXCL8*A + CXCR2*C + CD14*T + CXCR4*C (P perm = 0.01, OR = 3.21, 95% CI 1.63–6.31).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ross, R., Atherosclerosis—an inflammatory disease, N. Engl. J. Med., 1999, vol. 340, no. 2, pp. 115–126. doi 10.1056/nejm199901143400207

  2. Legein, B., Temmerman, L., Biessen, E.A., and Lutgens, E., Inflammation and immune system interactions in atherosclerosis, Cell. Mol. Life Sci., 2013, vol. 70, no. 20, pp. 3847–3869. doi 10.1007/s00018- 013-1289-1

    Article  CAS  PubMed  Google Scholar 

  3. Bruserud, Ø. and Kittang, A.O., The chemokine system, in The Chemokine System in Experimental and Clinical Hematology, Berlin: Springer-Verlag, 2010, pp. 3–12. doi 10.1007/978-3-642-12639-0

    Chapter  Google Scholar 

  4. Hoogeveen, R.C., Morrison, A., Boerwinkle, E., et al., Plasma MCP-1 level and risk for peripheral arterial disease and incident coronary heart disease: atherosclerosis risk in communities study, Atherosclerosis, 2005, vol. 183, no. 2, pp. 301–307. doi 10.1016/jatherosclerosis. 2005.03.007

    Article  CAS  PubMed  Google Scholar 

  5. Gu, L., Okada, Y., Clinton, S.K., et al., Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice, Mol. Cell, 1998, vol. 2, no. 2, pp. 275–281. doi 10.1016/S1097-2765(00)80139-2

    Article  CAS  PubMed  Google Scholar 

  6. Boring, L., Gosling, J., Cleary, M., et al., Decreased lesion formation in CCR2–/–mice reveals a role for chemokines in the initiation of atherosclerosis, Nature, 1998, vol. 394, no. 6696, pp. 894–897. doi 10.1038/29788

    Article  CAS  PubMed  Google Scholar 

  7. Boisvert, W.A., Rose, D.M., Johnson, K.A., et al., Upregulated expression of the CXCR2 ligand KC/GROalpha in atherosclerotic lesions plays a central role in macrophage accumulation and lesion progression, Am. J. Pathol., 2006, vol. 168, no. 4, pp. 1385–1395. doi 10.2353/ajpath.2006.040748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Papadopoulou, C., Corrigall, V., Taylor, P.R., et al., The role of the chemokines MCP-1, GRO-alpha, IL-8 and their receptors in the adhesion of monocytic cells to human atherosclerotic plaques, Cytokine, 2008, vol. 43, no. 2, pp. 181–186. doi 10.1016/jcyto.2008.05.009

    CAS  PubMed  Google Scholar 

  9. Soehnlein, O., Drechsler, M., Döring, Y., et al., Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes, EMBO Mol. Med., 2013, vol. 5, no. 3, pp. 471–481. doi 10.1002/emmm.201201717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boisvert, W.A., Curnss, L.K., and Terkeltaub, R.A., Interleukin-8 and its receptor CXCR2 in atherosclerosis, Immunol. Res., 2000, vol. 21, nos. 2–3, pp. 129–137. doi 10.1385/IR:21:2-3:129

    Article  CAS  PubMed  Google Scholar 

  11. Neumann, F.J., Ott, I., Gawaz, M., et al., Cardiac release of cytokines and inflammatory responses in acute myocardial infarction, Circulation, 1995, vol. 92, no. 4, pp. 748–755. doi 10.1161/01.CIR.92.4.748

    Article  CAS  PubMed  Google Scholar 

  12. Yeh, M., Leitinger, N., de Martin, R., et al., Increased transcription of IL-8 in endothelial cells is differentially regulated by TNF- and oxidized phospholipids, Arterioscler. Thromb. Vasc. Biol., 2001, vol. 21, no. 10, pp. 1585–1591. doi 10.1161/hq1001.097027

    Article  CAS  PubMed  Google Scholar 

  13. Zernecke, A., Liehn, E.A., Gao, J.L., et al., Deficiency in CCR5 but not CCR1 protects against neointima formation in atherosclerosispronemice: involvement of IL-10, Blood, 2006, vol. 107, no. 11, pp. 4240–4243. doi 10.1182/blood-2005-09-3922

    Article  CAS  PubMed  Google Scholar 

  14. Potteaux, S., Combadiere, C., Esposito, B., et al., Role of bone marrow-derived CC-chemokine receptor 5 in the development of atherosclerosis of low-density lipoprotein receptor knockout mice, Arterioscler. Thromb. Vasc. Biol., 2006, vol. 26, no. 8, pp. 1858–1863. doi 10.1161/01.ATV.0000231527.22762.71

    Article  CAS  PubMed  Google Scholar 

  15. Bot, I., Daissormont, I.T., Zernecke, A., et al., CXCR4 blockade induces atherosclerosis by affecting neutrophil function, J. Mol. Cell. Cardiol., 2014, vol. 74, pp. 44–52. doi 10.1016/jyjmcc.2014.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liao, W., Endotoxin: possible roles in initiation and development of atherosclerosis, J. Lab. Clin. Med., 1996, vol. 128, no. 5, pp. 452–460. doi 10.1016/S0022-2143(96)90042-6

    Article  CAS  PubMed  Google Scholar 

  17. Barnes, P.J. and Karin, M., Nuclear factor-kB: a pivotal transcription factor in chronic inflammatory diseases, N. Engl. J. Med., 1997, vol. 336, no. 15, pp. 1066–1071. doi 10.1056/nejm199704103361506

    Article  CAS  PubMed  Google Scholar 

  18. Sambrook, J., Fritsch, E.F. and Maniatis, T., Molecular Cloning, New York: Cold Spring Harbor Lab., 1989, vol. 2, p. 14–9.23.

    Google Scholar 

  19. Favorov, A.V., Andreewski, T.V., Sudomoina, M.A., et al., A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans, Genetics, 2005, vol. 171, no. 4, pp. 2113–2121. doi 10.1534/genetics.105.048090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lima-Neto, L.G., Hirata, R.D.C., Luchessi, A.D., et al., CD14 and IL6 polymorphisms are associated with a pro-atherogenic profile in young adults with acute myocardial infarction, J. Thromb. Thrombolysis, 2013, vol. 36, no. 3, pp. 332–340. doi 10.1007/s11239-012-0841-4

    Article  CAS  PubMed  Google Scholar 

  21. Hubacek, J.A., Pit’ha, J., Škodová, Z., et al., C (–260) ? T polymorphism in the promoter of the CD14 monocyte receptor gene as a risk factor for myocardial infarction, Circulation, 1999, vol. 99, no. 25, pp. 3218–3220. doi 10.1161/01cir.99.25.3218

    Article  CAS  PubMed  Google Scholar 

  22. Hermanna, M., Fischer, D., Hoffmannc, M.M., et al., CRP and CD14 polymorphisms correlate with coronary plaque volume in patients with coronary artery disease IVUS substudy of the ENCORE trials, Atherosclerosis, 2012, vol. 220, no. 1, pp. 172–176. doi 10.1016/jatherosclerosis.2011.10.019

    Article  Google Scholar 

  23. Morange, P.E., Tiret, L., Saut, N., et al., TLR4/Asp299Gly, CD14/C-260T, plasma levels of the soluble receptor CD14 and the risk of coronary heart disease: the PRIME study, Eur. J. Human Genet., 2004, vol. 12, no. 12, pp. 1041–1049. doi 10.1038/sjejhg.5201277

    Article  CAS  Google Scholar 

  24. Song, M. and Cho, S., CD14 acts as an angiogenic factor by inducing basic fibroblast growth factor (bFGF), Bull. Korean Chem. Soc., 2007, vol. 28, no. 9, p. 1613.

    Article  CAS  Google Scholar 

  25. Sedlmeier, E.M., Grallert, H., Huth, C., et al., Gene variants of monocyte chemoattractant protein 1 and components of metabolic syndrome in KORA S4, Augsburg, Eur. J. Endocrinol., 2007, vol. 156, no. 3, pp. 377–385. doi 10.1530/eje.1.02345

    Article  CAS  PubMed  Google Scholar 

  26. Nasibullin, T.R., Belonogova, V.A., Tuktarova, I.A., et al., Association of the CCL2 polymorphic markers with essential hypertension, Russ. J. Genet., 2011, vol. 47, no. 9, pp. 1124–1127. doi 10l134/S10227954-11090134

    Article  CAS  Google Scholar 

  27. Rovin, B.H., Lu, L., and Saxena, R., A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression, Biochem. Biophys. Res. Commun., 1999, vol. 259, no. 2, pp. 344–348. doi 10.1006/bbrc.1999.0796

    Article  CAS  PubMed  Google Scholar 

  28. McDermott, D.H., Yang, Q., Kathiresan, S., et al., CCL2 polymorphisms are associated with serum monocyte chemoattractant protein-1 levels and myocardial infarction in the Framingham Heart Study, Circulation, 2005, vol. 112, no. 8, pp. 1113–1120. doi 10.1161/circulationaha.105.543579

    Article  CAS  PubMed  Google Scholar 

  29. Fujiyama, S., Amano, K., Uehira, K., et al., Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells, Circ. Res., 2003, vol. 93, no. 10, pp. 980–989. doi 10.1161/01res.0000099245.08637

    Article  CAS  PubMed  Google Scholar 

  30. Hong, K.H., Ryu, J., and Han, K.H., Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A, Blood, 2005, vol. 105, no. 4, pp. 1405–1407. doi 10.1182/blood-2004-08-3178

    Article  CAS  PubMed  Google Scholar 

  31. Stamatovic, S.M., Keep, R.F., Mostarica-Stojkovic, M., and Andjelkovic, A.V., CCL2 regulates angiogenesis via activation of Ets-1 transcription factor, J. Immunol., 2006, vol. 177, no. 4, pp. 2651–2661. doi 10.4049/jimmunol.177.4.2651

    Article  CAS  PubMed  Google Scholar 

  32. Sudomoina, M.A., Sukhinina, T.S., Barsova, R.M., et al., Complex analysis of association of inflammation gene polymorphisms with myocardial infarction, Mol. Biol. (Moscow), 2010, vol. 44, no. 3, pp. 407–414. doi 10l134/s0026893310030088

    Article  CAS  Google Scholar 

  33. Breunis, W.B., Biezeveld, M.H., Geissler, J., et al., Polymorphisms in chemokine receptor genes and susceptibility to Kawasaki disease, Clin. Exp. Immunol., 2007, vol. 150, no. 1, pp. 83–90. doi 10.1111/j.1365-2249.2007.03457x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dinh, K.M., Pedersen, O.B., Petersen, M.S., et al., The impact of CCR5-32 deletion on C-reactive protein levels and cardiovascular disease: results from the Danish blood donor study, Atherosclerosis, 2015, vol. 242, no. 1, pp. 222–225. doi 10.1016/jatherosclerosis. 2015.07.031

    Article  CAS  PubMed  Google Scholar 

  35. Singh, N., Sinha, N., Kumar, S., et al., Polymorphism in chemokine receptor genes and risk of acute myocardial infarction in North Indian population, Mol. Biol. Rep., 2012, vol. 39, no. 3, pp. 2753–2759. doi 10.1007/s11033-011-1031-8

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Z., Liu, J., Wang, H., et al., Association between chemokine receptor 5 (CCR5) delta32 gene variant and atherosclerosis: a meta-analysis of 13 studies, Int. J. Clin. Exp. Med., 2015, vol. 8, no. 1, p. 658.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Braunersreuther, V., Zernecke, A., Arnaud, C., et al., Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice, Arterioscler. Thromb. Vasc. Biol., 2007, vol. 27, no. 2, pp. 373–379. doi 10.1161/01atv.0000253886.44609ae

    Article  CAS  PubMed  Google Scholar 

  38. Quinones, M.P., Martinez, H.G., Jimene, F., et al., CC chemokine receptor 5 influences late-stage atherosclerosis, Atherosclerosis, 2007, vol. 195, no. 1. e92–e103. doi 10.1016/jatherosclerosis.2007.03.026

    Article  CAS  PubMed  Google Scholar 

  39. Mehta, N.N., Li, M., William, D., et al., The novel atherosclerosis locus at 10q11 regulates plasma CXCL12 levels, Eur. Heart. J., 2011, vol. 32, pp. 963–971. doi 10.1093/eurheartj/ehr091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Oliveira, K.B., Guembarovski, R.L., Oda, J.M.M., et al., CXCL12 rs1801157 polymorphism and expression in peripheral blood from breast cancer patients, Cytokine, 2011, vol. 55, no. 2, pp. 260–265. doi 10.1016/jcyto.2011.04.017

    Article  PubMed  Google Scholar 

  41. Schober, A., Bernhagen, J., and Weber, C., Chemokine- like functions of MIF in atherosclerosis, J. Mol. Med., 2008, vol. 86, no. 7, pp. 761–770. doi 10.1007/s00109-008-0334

    Article  CAS  PubMed  Google Scholar 

  42. Boisvert, W.A. and Santiago, R., Curtiss, L.K., and Terkeltaub, R.A., A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptordeficient mice, J. Clin. Invest., 1998, vol. 101, no. 2, p. 353. doi 10.1172/JCI1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Salim, P.H., Jobim, M., Bredemeier, M., et al., Combined effects of CXCL8 and CXCR2 gene polymorphisms on susceptibility to systemic sclerosis, Cytokine, 2012, vol. 60, no. 2, pp. 473–477. doi 10.1016/jcyto.2012.05.026

    Article  CAS  PubMed  Google Scholar 

  44. Javor, J., Bucova, M., Cervenova, O., et al., Genetic variations of interleukin-8, CXCR1 and CXCR2 genes and risk of acute pyelonephritis in children, Int. J. Immunogenet., 2012, vol. 39, no. 4, pp. 338–345. doi 10.1111/j.1744-313X.2012.01096x

    CAS  Google Scholar 

  45. Hildebrand, F., Stuhrmann, M., van Griensven, M., et al., Association of IL-8-251A/T polymorphism with incidence of acute respiratory distress syndrome (ARDS) and IL-8 synthesis after multiple trauma, Cytokine, 2007, vol. 37, no. 3, pp. 192–199. doi 10.1016/jcyto.2007.03.008

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Nasibullin.

Additional information

Original Russian Text © T.R. Nasibullin, L.F. Yagafarova, I.R. Yagafarov, Ya.R. Timasheva, V.V. Erdman, I.A. Tuktarova, O.E. Mustafina, 2016, published in Genetika, 2016, Vol. 52, No. 8, pp. 966–974.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasibullin, T.R., Yagafarova, L.F., Yagafarov, I.R. et al. Association of polymorphic markers of chemokine genes, their receptors, and CD14 gene with coronary atherosclerosis. Russ J Genet 52, 860–867 (2016). https://doi.org/10.1134/S1022795416060090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795416060090

Keywords

Navigation