Skip to main content
Log in

Genetic polymorphism, haplotype distribution, and phylogeny of Daphnia (Cladocera: Anomopoda) species from the water bodies of russia as inferred from the 16S mtDNA gene sequencing

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The data on the genetic polymorphism of the most widespread Daphnia species occupying different water bodies of Russia are presented. The phylogenetic relationships between the examined species were established, and the haplotype networks were constructed. A fragment of the 16S mitochondrial DNA gene was used as a genetic marker. The results of molecular phylogenetic analysis generally coincided with modern concepts in the systematics of the genus Daphnia. The representatives of the divergent mitochondrial lineages within the D. longispina, D. pulex, and D. magna complex remain poorly investigated morphologically. For D. dentifera, a new habitat on the territory of Russia, namely, the water bodies of the Lake Baikal basin, was identified. A conclusion was made that the 16S mtDNA gene could be successfully used in phylogeographic analysis of the genus Daphnia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kotov, A.A., A revision of Leydigia Kurz, 1875 (Anomopoda, Cladocera, Branchiopoda), and subgeneric differentiation within the genus, Zootaxa, 2009, vol. 2082, pp. 1–84.

    Google Scholar 

  2. Korovchinsky, N.M., A taxonomic revision of Pseudosida szalayi Daday, 1898 (Crustacea: Cladocera: Sididae) over its Asian range, with focus on the northernmost populations first recorded from the Amur River basin (Far East of Russia), Zootaxa, 2010, vol. 2345, pp. 1–18.

    Google Scholar 

  3. Sinev, A.Y. and Kotov, A.A., Revision of the Holarctic genus Rhynchotalona Norman, 1903 (Anomopoda: Chydoridae), Zootaxa, 2014, vol. 3841, no. 2, pp. 188–210.

    PubMed  Google Scholar 

  4. Belyaeva, M. and Taylor, D.J., Cryptic species within the Chydorus sphaericus species complex (Crustacea: Cladocera) revealed by molecular markers and sexual stage morphology, Mol. Phyl. Evol., 2009, vol. 50, pp. 534–546.

    Article  CAS  Google Scholar 

  5. Möst, M., Petrusek, A., Sommaruga, R., et al., At the edge and on the top: molecular identification and ecology of Daphnia dentifera and D. longispina in high-altitude Asian lakes, Hydrobiologia, 2012. doi 10.1007/s10750-012-1311-x

    Google Scholar 

  6. Ma, X., Petrusek, A., Wolinska, J., et al., Diversity of the Daphnia longispina species complex in Chinese lakes: a DNA taxonomy approach, J. Plank. Res., 2014. doi 10.1093/plankt/fbu091

    Google Scholar 

  7. Petrusek, A., Thielsch, A., and Schwenk, K., Mitochondrial sequence variation suggests extensive cryptic diversity within the Western Palearctic Daphnia longispina complex, Limnol. Oceanogr., 2012, vol. 57, no. 6, pp. 1838–1845.

    Article  Google Scholar 

  8. Zuikova, E.I., Bochkarev, N.A., and Katokhin, A.V., Molecular genetic identification and phylogeny of Daphnia species (Crustacea, Cladocera) from water bodies of the Lake Chany basin, Russ. J. Genet., 2013, vol. 49, no. 2, pp. 206–213.

    Google Scholar 

  9. Zuykova, E.I., Bochkarev, N.A., and Katokhin, A.V., Identification of the Daphnia species (Crustacea: Cladocera) in the lakes of the Ob and Yenisei River basins: morphological and molecular phylogenetic approaches, Hydrobiologia, 2013, vol. 715, pp. 135–150. doi 10.1007/s10750-012-1423-3

    Article  CAS  Google Scholar 

  10. Gießler, S., Mader, E., and Schwenk, K., Morphological evolution and genetic differentiation in Daphnia species complexes, J. Evol. Biol., 1999, vol. 12, pp. 710–723.

    Article  Google Scholar 

  11. Duffy, M.A., Tessier, A.J., and Kosnik, M.A., Testing the ecological relevance of Daphnia species, Fresh. Biol., 2004, vol. 49, pp. 55–64.

    Article  Google Scholar 

  12. Adamowicz, S.J., Petrusek, A., Colbourne, J.K., et al., The scale of divergence: a phylogenetic appraisal of intercontinental allopatric speciation in a passively dispersed freshwater zooplankton genus, Mol. Phylog. Evol., 2009, vol. 50, pp. 423–436.

    Article  Google Scholar 

  13. Taylor, D.J., Finston, T.L., and Hebert, P.D.N., Biogeography of a widespread freshwater crustacean: pseudocongruence and cryptic endemism in the North American Daphnia laevis complex, Evolution, 1998, vol. 52, no. 6, pp. 1648–1670.

    Article  CAS  Google Scholar 

  14. Xu, S., Hebert, P.D.N., Kotov, A.A., et al., The noncosmopolitanism paradigm of freshwater zooplankton: insights from the global phylogeography of the predatory cladoceran Polyphemus pediculus (Linnaeus, 1761) (Crustacea, Onychopoda), Mol. Ecol., 2009, vol. 18, pp. 5161–5179.

    Article  CAS  PubMed  Google Scholar 

  15. Briski, E., Cristescu, M.E., Bailey, S.A., et al., Use of DNA barcoding to detect invertebrate invasive species from diapausing eggs, Biol. Inv., 2011, vol. 13, pp. 1325–1340.

    Article  Google Scholar 

  16. Taylor, D. and Hebert, P.D.N., Habitat-dependent hybrid parentage and differential introgression between neighboringly sympatric Daphnia species, Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, pp. 7079–7083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kotov, A.A., Ishida, S., and Taylor, D.J., Revision of the genus Bosmina Baird, 1845 (Cladocera: Bosminidae), based on evidence from male morphological characters and molecular phylogenies, Zool. J. Linn. Soc., 2009, vol. 156, pp. 1–51.

    Google Scholar 

  18. Rocha-Olivares, A., Fleeger, J.W., and Foltz, D.W., Decoupling of molecular and morphological evolution in deep lineages of a meiobenthic harpacticoid copepod, Mol. Biol. Evol., 2001, vol. 18, no. 6, pp. 1088–1102.

    Article  CAS  PubMed  Google Scholar 

  19. Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S., et al., Identification of birds through DNA barcodes, PLoS Biol., 2004, vol. 2, pp. 1657–1663.

    Article  CAS  Google Scholar 

  20. Glagolev, S.M., Species composition of Daphnia in lake Glubokoe with notes on the taxonomy and geographical distribution of some species, Hydrobiologia, 1986, vol. 141, pp. 55–82.

    Article  Google Scholar 

  21. Flößner, D. and Kraus, K., On taxonomy of the Daphnia hyalina-galeata complex (Crustacea: Cladocera), Hydrobiologia, 1986, vol. 137, pp. 97–115.

    Article  Google Scholar 

  22. Opredelitel’ presnovodnykh bespozvonochnykh Rossii i sopredel’nykh territorii (Freshwater Invertebrates of Russia and Adjacent Territories: an Identification Guide), vol. 2: Rakoobraznye (Crustaceans), Tsalolikhin, S.Ya., Ed., St. Petersburg: Zool. Inst. Ross. Akad. Nauk, 1995.

  23. Opredelitel’ zooplanktona i zoobentosa presnykh vod Evropeiskoi Rossii (Identification Guide for Zooplankton and Zoobenthos of European Russia Fresh Waters) Alekseev, V.R. and Tsalolikhin, S.Ya., Eds., Moscow: KMK, 2010, vol. 1.

  24. Schwenk, K., Sand, A., Boersma, M., et al., Genetic markers, genealogies and biogeographic patterns in the cladocera, Aq. Ecol., 1998, vol. 32, pp. 37–51.

    CAS  Google Scholar 

  25. Zuykova, E.I., Bochkarev, N.A., Semenova, A.S., et al., Morphological differentiation, mitochondrial and nuclear DNA variability between geographically distant populations of Daphnia galeata and Daphnia cucullata (Anomopoda, Daphniidae), J. Sib. Fed. Univ. Biol., 2010, vol. 4, pp. 434–453.

    Google Scholar 

  26. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95–98.

    CAS  Google Scholar 

  27. Librado, P. and Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, pp. 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  28. Posada, D., Selection of models of DNA evolution with jMODELTEST, Bioinformatics for DNA Sequence Analysis, 2009, vol. 537, pp. 93–112.

    Article  CAS  Google Scholar 

  29. Tamura, K., Estimation of the number of nucleotide substitutions when there are strong transition–transversion and G + C-content biases, Mol. Biol. Evol., 1992, vol. 9, pp. 678–687.

    CAS  PubMed  Google Scholar 

  30. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ronquist, F. and Huelsenbeck, J.P., MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, 2003, vol. 19, pp. 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  32. Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, pp. 6–25.

    Google Scholar 

  33. Bandelt, H-J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, pp. 37–48.

    Article  CAS  PubMed  Google Scholar 

  34. Excoffier, L. and Lischer, H.E.L., Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Res., 2010, vol. 10, pp. 564–567.

    Article  Google Scholar 

  35. Avise, J.C., Phylogeography: The History and Formation of Species, Cambridge, Massachusetts: Harvard Univ. Press, 2000.

    Google Scholar 

  36. Petrusek, A., Hoboek, A., Nilssen, J.P., et al., A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda), Zool. Scr., 2008, vol. 37, no. 5, pp. 507–519.

    Article  Google Scholar 

  37. Kotov, A.A., Ishida, S., and Taylor, D.J., A new species in the Daphnia curvirostris (Crustacea: Cladocera) complex from the eastern Palearctic with molecular phylogenetic evidence for the independent origin of neckteeth, J. Plank. Res., 2006, vol. 28, no. 11, pp. 1067–1079.

    Article  Google Scholar 

  38. Vergilino, R., Markova, S., Ventura, M., et al., Reticulate evolution of the Daphnia pulex complex as revealed by nuclear markers, Mol. Ecol., 2011, vol. 20, pp. 1191–1207.

    Article  CAS  PubMed  Google Scholar 

  39. Crease, T.J., Omilian, A.R., Costanzo, K.S., and Taylor, D.J., Transcontinental phylogeography of the Daphnia pulex species complex, PLoS One, 2012, vol. 7, no.10. doi 10.1371/journalpone.0046620

    Google Scholar 

  40. Kotov, A.A., Morfologiya i filogeniya Anomopoda (Crustacea: Cladocera) (Morphology and phylogeny of Anomopoda (Crustacea: Cladocera)), Moscow: KMK, 2013.

    Google Scholar 

  41. Sacherová, V. and Hebert, P.D.N., The evolutionary history of the Chydoridae (Crustacea: Cladocera), Biol. J. Linn. Soc., 2003, vol. 79, pp. 629–643.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Zuykova.

Additional information

Original Russian Text © E.I. Zuykova, N.A. Bochkarev, N.G. Sheveleva, 2016, published in Genetika, 2016, Vol. 52, No. 6, pp. 672–684.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuykova, E.I., Bochkarev, N.A. & Sheveleva, N.G. Genetic polymorphism, haplotype distribution, and phylogeny of Daphnia (Cladocera: Anomopoda) species from the water bodies of russia as inferred from the 16S mtDNA gene sequencing. Russ J Genet 52, 585–596 (2016). https://doi.org/10.1134/S102279541604013X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541604013X

Keywords

Navigation