Skip to main content
Log in

Variability and relationships of the Far Eastern species of sculpins Myoxocephalus and Megalocottus (Cottidae) based on mtDNA markers and karyological data

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The phylogenetic relationships among five species of sculpins, including Myoxocephalus stelleri, M. brantii, M. jaok, M. ochotensis, and Megalocottus platycephalus, were estimated from the sequence variability of the mtDNA cytochrome b (cytb) and cytochrome oxidase 1 (CO1) genes. Analysis of the topologies of combined phylogenetic trees showed that all of the morphologically described species from different genera represented monophyletic groups with high support of branch robustness. Haplotypes with different karyotypes from different geographical localities with an intragroup nucleotide diversity of 0.42% were combined into the M. stelleri clade. All of the species (except for M. stelleri from the Sea of Japan and the Okhotsk Sea coast of the Hokkaido Island) were characterized by relatively low values of the intragroup variation, along with high values of interspecific variation of mtDNA-encoded markers. Studies of the M. stelleri karyotypes using Ag-banding showed that karyotypes of the individuals from the Sea of Japan and Okhotsk differed not only in the number of chromosomes (2n) but also in the number of active nucleolus organizers (NO) and stained NO blocks, calling into question whether they belong to a single species. The observed discrepancy between the phylogenetic topologies and karyological data is discussed in relation to the informative capacity of mtDNA fragments and the phenomenon of intraspecific chromosomal polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fedorov, V.V., Chereshnev, I.A., Nazarkin, M.V., et al., Katalog morskikh i presnovodnykh ryb severnoi chasti Okhotskogo morya (Catalog of Marine and Freshwater Fishes of the Northern Part of the Sea of Okhotsk), Vladivostok: Dal’nauka, 2003.

    Google Scholar 

  2. Sokolovskii, A.S., Dudarev, V.A., Sokolovskaya, T.G., et al., Ryby rossiiskikh vod Yaponskogo morya: (annotirovannyi i illyustrirovannyi katalog) (Fish of Russia’s Waters in the Sea of Japan: (Annotated and Illustrated Catalogue)), Vladivostok: Dal’nauka, 2007.

    Google Scholar 

  3. Soldatov, V.K. and Lindberg, G.U., Obzor ryb dal’nevostochnykh morei (A Review of the Fishes of the Far East Seas), Izvestiia Tikhookeanskogo Nauchnogo Instituta Rybnogo Khoziaistva (Bulletins of Pacific Science Institute of Fishery), Vladivostok, 1930, vol. 5.

    Google Scholar 

  4. Neelov, A.V., Seismosensornaya sistema i klassifikatsiya kerchakovykh ryb (Cottidae: Myoxocephalinae, Artediellinae) (Seismosensory System and Classification of Cottid Fishes (Cottidae: Myoxocephalinae, Artediellinae)), Leningrad: Nauka, 1979.

    Google Scholar 

  5. Amaoka, K., Nakaya, K., and Yabe, M., The Fishes of Northern Japan, Sapporo: Hokkaido, 1995.

    Google Scholar 

  6. Nakabo, T., Fishes of Japan with Pictorial Keys to the Species, Tokai University Press, 2002.

    Google Scholar 

  7. Miller, I.N., Karyotype of sculpin, Myoxocephalus stelleri from Peter the Great Bay, Sea of Japan, Russ. J. Mar. Biol., 2000, vol. 26, no. 2, pp. 124–127.

    Article  Google Scholar 

  8. Ryazanova, I.N. and Frolov, S.V., Comparison of sculpin Myoxocephalus stelleri Tilesius (Cottidae) from the Sea of Okhotsk and the Sea of Japan, Vestn. Sev.-Vost. Nauchn. Tsentra Dal’nevost. Otd. Ross. Akad. Nauk, 2009, no. 1, pp. 68–71.

    Google Scholar 

  9. Taranets, A.Ya., The classification and origin of gobies of the Cottidae family, Izv. Akad. Nauk SSSR, 1941, no. 3, pp. 427–447.

    Google Scholar 

  10. Cowan, G.I.McT., Relationships within the genus Myoxocephalus (Pisces: Cottidae) based on morphological and biochemical data using numerical and conventional methods of analysis, Can. J. Zool., 1972, vol. 50, no. 5, pp. 671–682.

    Article  Google Scholar 

  11. Johns, G.C. and Avise, J.C., A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene, Mol. Biol. Evol., 1998, vol. 15, no. 11, pp. 1481–1490.

    Article  PubMed  CAS  Google Scholar 

  12. Hubert, N., Hanner, R., Holm, E., et al., Identifying Canadian freshwater fishes through DNA barcodes, PLoS One, 2008, vol. 3, no. 6. e2490. doi 10.1371/journal.pone.0002490.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sevilla, R.G., Diez, A., Noren, M., et al., Primers and polymerase chain reaction conditions for DNA barcoding teleost fish based on the mitochondrial cytochrome b and nuclear rhodopsin genes, Mol. Ecol. Not., 2007, vol. 7, pp. 730–734.

    Article  CAS  Google Scholar 

  14. Kartavtsev, Y.P., Park, T.J., Vinnikov, K.A., et al., Cytochrome b (Cyt-b) gene sequences analysis in six flatfish species (Pisces, Pleuronectidae) with phylogenetic and taxonomic insights, J. Mar. Biol., 2007, vol. 152, pp. 757–773.

    Article  CAS  Google Scholar 

  15. Ward, R.D., Hanner, R., and Hebert, P.D.N., Review paper: The campaign to DNA barcode all fishes, FISH-BOL, J. Fish Biol., 2009, vol. 74, pp. 329–356.

    Article  PubMed  CAS  Google Scholar 

  16. Kartavtsev, Y.P., Sharina, S.N., Goto, T., et al., Sequence diversity at cytochrome oxidase 1 (Co-1) gene among Sculpins (Scorpaeniformes, Cottidae) and some other scorpionfish of Russia Far East with phylogenetic and taxonomic insights, Genes Genomics, 2009, vol. 31, no. 2, pp. 183–197.

    Article  CAS  Google Scholar 

  17. Kontula, T. and Väinölä, R., Relationships of Palearctic and Nearctic’ glacial relict’ Myoxocephalus sculpins from mitochondrial DNA data, Mol. Ecol., 2003, vol. 12, pp. 3179–3184.

    Article  PubMed  Google Scholar 

  18. Yamazaki, A., Markevich, A., and Munehara, H., Molecular phylogeny and zoogeography of marine sculpins in the genus Gymnocanthus (Teleostei; Cottidae) based on mitochondrial DNA sequences, Mar. Biol. (Berlin), 2013, vol. 160, pp. 2581–2589.

    Article  CAS  Google Scholar 

  19. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbour Lab., 1989, 2nd ed.

    Google Scholar 

  20. Ward, R.D., Zemlak, T.S., Innes, B.H., et al., DNA barcoding Australia’s fish species, Philos. Trans. R. Soc., B, 2005, vol. 360, pp. 1847–1857.

    Article  CAS  Google Scholar 

  21. Tamura, K., Peterson, D., Peterson, N., et al., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Swofford, D.L., PAUP* Phylogenetic Analysis Using Parsinomy (and Other Methods): Beta Version 10, Sunderland: Sinauer Associates, 2002.

    Google Scholar 

  23. Huelsenbeck, J.P. and Ronquist, F., MRBAYES: Bayesian inference of phylogeny, Bioinformatics, 2001, vol. 17, pp. 754–755.

    Article  PubMed  CAS  Google Scholar 

  24. Posada, D. and Crandall, K.A., Modeltest: testing the model of DNA substitution, Bioinformatics, 1998, vol. 14, no. 9, pp. 817–818.

    Article  PubMed  CAS  Google Scholar 

  25. Nei, M. and Kumar, S., Molecular Evolution and Phylogenetics, New York: Oxford Univ. Press, 2000.

    Google Scholar 

  26. Kligerman, A.D. and Bloom, S.E., Rapid chromosome preparations from solid tissues of fishes, J. Fish. Res. Board Can., 1977, no. 34, pp. 266–269.

    Google Scholar 

  27. Ryazanova, I.N., Investigation of karyotype of the frog sculpin Myoxocephalus brandti Steindachner (Cottidae) from Peter the Great Bay, Sea of Japan, Russ. J. Mar. Biol., 2005, vol. 31, no. 4, pp. 238–242.

    Article  Google Scholar 

  28. Howell, W.M. and Black, D.A., Controlled silverstaining of nucleolus organizer regions with a protective colloidal developer: a 1-step method, Experientia, 1980, vol. 36, pp. 1014–1015.

    Article  PubMed  CAS  Google Scholar 

  29. Kartavtsev, Yu.P., A comparative electrophoretic analysis of haemoglobins, water soluble muscle and crystalline lens’ proteins of five sculpin species of Cottidae family, Biol. Morya, 1975, vol. 2, pp. 31–38.

    Google Scholar 

  30. Ilves, K. and Tailor, E., Evolutionary and biogeographical patterns within the smelt genus Hypomesus in the North Pacific Ocean, J. Biogeogr., 2008, vol. 35, no. 1, pp. 48–64.

    Google Scholar 

  31. Barash, M.S., Matul, A.G., Kazarina, G.Kh., et al., Paleoceanography of the central Sea of Okhotsk during the Middle Pleistocene (350–190 ka) as inferred from micropaleontological data, Oceanology, 2006, vol. 46, no. 4, pp. 537–549.

    Article  Google Scholar 

  32. Matul, A.G., Abelmann, A., Nürnberg, D., et al., Stratigraphy and major paleoenvironmental changes in the Sea of Okhotsk during the last million years inferred from radiolarian data, Oceanology, 2009, vol. 49, no. 1, pp. 92–100.

    Article  Google Scholar 

  33. Shmidt, P.Yu., Ryby Okhotskogo morya (Fishes of the Sea of Okhotsk), Moscow: Akad. Nauk SSSR, 1950.

    Google Scholar 

  34. Frolov, S.V., Izmenchivost’ i evolyutsiya kariotipov lososevykh ryb (Karyotype Variation and Evolution of Salmonids), Vladivostok: Dal’nauka, 2000.

    Google Scholar 

  35. Ryazanova, I.N., Evolution of scalpins (Myoxocephalus and Megalocottus) of the Sea of Japan and the Sea of Okhotsk based on karyological data, Extended Abstract of Cand. Sci. Dissertation, Inst. Biol. Morya Dal’nevost. Otd. Ross. Akad. Nauk, Vladivostok, 2008.

    Google Scholar 

  36. Funk, D.J. and Omland, K.E., Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA, Annu. Rev. Ecol. Evol. Syst., 2003, vol. 34, pp. 397–423.

    Article  Google Scholar 

  37. Vasil’ev, V.P., Prazdnikov, D.V., Vasil’eva, E.D., Chromosome polymorphism of stargazer Uranoscopis scaber (Uranoscopidae, Perciformes) from the Black Sea, J. Ichthyol., 2012, vol. 52, no. 4, pp. 296–300.

    Article  Google Scholar 

  38. Vasil’eva, E.D., Morphokaryological variability and divergence of stargazers (Uranoscopus, Perciformes) from the Mediterranean Sea basin: 1. Divergence and taxonomic state of the Black Sea stargazer, J. Ichthyol., 2012, vol. 52, no. 7, pp. 476–484.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Podlesnykh.

Additional information

Original Russian Text © A.V. Podlesnykh, I.N. Moreva, 2014, published in Genetika, 2014, Vol. 50, No. 9, pp. 1075–1083.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlesnykh, A.V., Moreva, I.N. Variability and relationships of the Far Eastern species of sculpins Myoxocephalus and Megalocottus (Cottidae) based on mtDNA markers and karyological data. Russ J Genet 50, 949–956 (2014). https://doi.org/10.1134/S1022795414090117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414090117

Keywords

Navigation