Skip to main content
Log in

Determining Hydrogen Peroxide Content in Plant Tissue Extracts

  • METHODS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Hydrogen peroxide (H2O2), like other reactive oxygen species (ROS), plays a dual role in physiology of plant organisms. On the one hand, ROS are capable of initiating oxidative stress, thus resulting in damage and death of the cells and whole plants. On the other hand, ROS are signaling molecules that promote the formation of adaptive mechanisms and improve plant resistance. Therefore, H2O2 is now primarily considered as a signaling molecule that acts as a key component of hormonal signaling networks as well as a regulator of growth, development, stomatal guard cell movements, and adaptive responses to biotic and abiotic stressors. The majority of the methods used to measure H2O2 and other ROS are being criticized for the lack of specificity and, most important, insufficient reliability. Herein, possible causes for variability of results were analyzed, general requirements for sample pretreatment were formulated, and criteria to check if reliable data are obtained were proposed. The authors outlined in detail the benefits and shortcomings of commonly used methods for assaying H2O2 concentration in plant extracts, including those based on the oxidation of Fe2+, I, luminol, and substrates of peroxidase reaction as well as the methods relying on the complex formation between H2O2 and Ti(IV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Geigenberger, P. and Fernie, A.R., Metabolic control of redox and redox control of metabolism in plants, Antioxid. Redox Signal., 2014, vol. 21, p. 1389. https://doi.org/10.1089/ars.2014.6018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pradedova, E.V., Nimaeva, O.D., and Salyaev, R.K., Redox processes in biological systems, Russ. J. Plant Physiol., 2017, vol. 64, p. 822. https://doi.org/10.1134/S1021443717050107

    Article  CAS  Google Scholar 

  3. Demidchik, V., Reactive oxygen species and their role in plant oxidative stress, in Plant Stress Physiol., UK: CABI, 2017, p. 64. https://doi.org/10.1079/9781780647296.0064

    Book  Google Scholar 

  4. Noctor, G., Mhamdi, A., and Foyer, C.H., Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation, Plant Cell Environ., 2016, vol. 39, p. 1140. https://doi.org/10.1111/pce.12726

    Article  CAS  PubMed  Google Scholar 

  5. Osmolovskaya, N., Shumilina, J., Kim, A., Didio, A., Grishina, T., Bilova, T., Keltsieva, O.A., Zhukov, V., Tikhonovich, I., Tarakhovskaya, E., Frolov, A., and Wessjohann, L.A., Methodology of drought stress research: Experimental setup and physiological characterization, Int. J. Mol. Sci., 2018, vol. 19, p. 4089. https://doi.org/10.3390/ijms19124089

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cerny, M., Habanova, H., Berka, M., Luklova, M., and Brzobohaty, B., Hydrogen peroxide: its role in plant biology and crosstalk with signalling networks, Int. J. Mol. Sci., 2018, vol. 19, p. 2812. https://doi.org/10.3390/ijms19092812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rhee, S.G., Chang, T.-S., Jeong, W., and Kang, D., Methods for detection and measurement of hydrogen peroxide inside and outside of cells, Mol. Cells, 2010, vol. 29, p. 539. https://doi.org/10.1007/s10059-010-0082-3

    Article  CAS  PubMed  Google Scholar 

  8. Smirnoff, N. and Arnaud, D., Hydrogen peroxide metabolism and functions in plants, New Phytol., 2019, vol. 221, p. 1197. https://doi.org/10.1111/nph.15488

    Article  CAS  PubMed  Google Scholar 

  9. Kreslavski, V.D., Los, D.A., Allakhverdiev, S.I., and Kuznetsov, V.V., Signaling role of reactive oxygen species in plants under stress, Russ. J. Plant Physiol., 2012, vol. 59, p. 141. https://doi.org/10.1134/S1021443712020057

    Article  CAS  Google Scholar 

  10. Mittler, R., ROS are good, Trends Plant Sci., 2017, vol. 22, p. 11. https://doi.org/10.1016/j.tplants.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  11. Waszczak, C., Carmody, M., and Kangasjärvi, J., Reactive oxygen species in plant signaling, Annu. Rev. Plant Biol., 2018, vol. 69, p. 209. https://doi.org/10.1146/annurev-arplant-042817-040322

    Article  CAS  PubMed  Google Scholar 

  12. Martin, R.E., Postiglione, A.E., and Muday, G.K., Reactive oxygen species function as signaling molecules in controlling plant development and hormonal responses, Curr. Opin. Plant Biol., 2022, vol. 69, p. 102293. https://doi.org/10.1016/j.pbi.2022.102293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dvorak, P., Krasylenko, Y., Zeiner, A., Samaj, J., and Takac, T., Signaling toward reactive oxygen species-scavenging enzymes in plants, Front. Plant Sci., 2021, vol. 11. https://doi.org/10.3389/fpls.2020.618835

  14. Akter, S., Khan, M.S., Smith, E.N., and Flashman, E., Measuring ROS and redox markers in plant cells, RSC Chem. Biol., 2021, vol. 2, p. 1384. https://doi.org/10.1039/D1CB00071C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Considine, M.J. and Foyer, C.H., Oxygen and reactive oxygen species-dependent regulation of plant growth and development, Plant Physiol., 2021, vol. 186, p. 79. https://doi.org/10.1093/plphys/kiaa077

    Article  CAS  PubMed  Google Scholar 

  16. Mattila, H., Khorobrykh, S., Havurinne, V., and Tyystjärvi, E., Reactive oxygen species: reactions and detection from photosynthetic tissues, J. Photochem. Photobiol. B, 2015, vol. 152, p. 176. https://doi.org/10.1016/j.jphotobiol.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  17. Nietzel, T., Elsässer, M., Ruberti, C., Steinbeck, J., Ugalde, J.M., Fuchs, P., Wagner, S., Ostermann, L., Moseler, A., Lemke, P., Fricker, M.D., Müller-Schüssele, S.J., Moerschbacher, B.M., Costa, A., Meyer, A.J., and Schwarzländer, M., The fluorescent protein sensor roGFP2-Orp1 monitors in vivo H2O2 and thiol redox integration and elucidates intracellular H2O2 dynamics during elicitor-induced oxidative burst in Arabidopsis, New Phytol., 2019, vol. 221, p. 1649. https://doi.org/10.1111/nph.15550

    Article  CAS  PubMed  Google Scholar 

  18. Muller-Schussele, S.J., Schwarzlander, M., and Meyer, A.J., Live monitoring of plant redox and energy physiology with genetically encoded biosensors, Plant Physiol., 2021, vol. 186, p. 93. https://doi.org/10.1093/plphys/kiab019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Winterbourn, C.C., The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells, Biochim. Biophys. Acta, 2014, vol. 1840, p. 730. https://doi.org/10.1016/j.bbagen.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  20. Queval, G., Hager, J., Gakiere, B., and Noctor, G., Why are literature data for H2O2 contents so variable? A discussion of potential difficulties in the quantitative assay of leaf extracts, J. Exp. Bot., 2008, vol. 59, p. 135. https://doi.org/10.1093/jxb/erm193

    Article  CAS  PubMed  Google Scholar 

  21. Veljovic-Jovanovic, S., Noctor, G., and Foyer, C.H., Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate, Plant Physiol. Biochem., 2002, vol. 40, p. 501. https://doi.org/10.1016/S0981-9428(02)01417-1

    Article  CAS  Google Scholar 

  22. Lee, H.H.B., Park, A.-H., and Oloman, C., Stability of hydrogen peroxide in sodium carbonate solutions, Tappi J., 2000, vol. 83.

  23. Akagawa, M., Shigemitsu, T., and Suyama, K., Production of hydrogen peroxide by polyphenols and polyphenol-rich beverages under quasi-physiological conditions, Biosci. Biotechnol. Biochem., 2003, vol. 67, p. 2632. https://doi.org/10.1271/bbb.67.2632

    Article  CAS  PubMed  Google Scholar 

  24. Bayliak, M.M., Burdyliuk, N.I., and Lushchak, V.I., Effects of pH on antioxidant and prooxidant properties of common medicinal herbs, Open Life Sci., 2016, vol. 11, p. 298. https://doi.org/10.1515/biol-2016-0040

    Article  CAS  Google Scholar 

  25. Takenaka, A., Takenaka, O., Mizota, T., Shibata, K., and Inada, Y., Sodium trichloroacetate as a denaturation reagent for proteins, J. Biochem., 1971, vol. 70, p. 63. https://doi.org/10.1093/oxfordjournals.jbchem.a129627

    Article  CAS  PubMed  Google Scholar 

  26. Sagisaka, S., The occurrence of peroxide in a perennial plant Populus gelrica, Plant Physiol., 1976, vol. 57, p. 308. https://doi.org/10.1104/pp.57.2.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Najib, F.M. and Hayder, O.I., Study of stoichiometry of ferric thiocyanate complex for analytical purposes including F-determination, Iraqi Natl. J. Chem., 2011, vol. 42, p. 135

    Google Scholar 

  28. Moon, J.-K. and Shibamoto, T., Antioxidant assays for plant and food components, J. Agric. Food Chem., 2009, vol. 57, p. 1655. https://doi.org/10.1021/jf803537k

    Article  CAS  PubMed  Google Scholar 

  29. Kokorev, A.I., Shkliarevskyi, M.A., and Kolupaev, Y.E., Involvement of nitric oxide in the implementation of the stress-protective action of cadaverine on wheat seedlings under hyperthermia and its relations to different signal messengers, Russ. J. Plant Physiol., 2022, vol. 69, p. 68. https://doi.org/10.1134/S1021443722040082

    Article  CAS  Google Scholar 

  30. Chetina, O.A., Botalova, K.I., and Kaigorodov, R.V., Effects of alkalinity and acidity of the root medium on defense systems in Triticum aestivum and Secale cereale, Russ. J. Plant Physiol., 2020, vol. 67, p. 334. https://doi.org/10.1134/S1021443720010033

    Article  CAS  Google Scholar 

  31. Gay, C. and Gebicki, J.M., A critical evaluation of the effect of sorbitol on the ferric–xylenol orange hydroperoxide assay, Anal. Biochem., 2000, vol. 284, p. 217. https://doi.org/10.1006/abio.2000.4696

    Article  CAS  PubMed  Google Scholar 

  32. Marre, M.T., Amicucci, E., Zingarelli, L., Albergoni, F., and Marre, E., The respiratory burst and electrolyte leakage induced by sulfhydryl blockers in Egeria densa leaves are associated with H2O2 production and are dependent on Ca2+ influx, Plant Physiol., 1998, vol. 118, p. 1379. https://doi.org/10.1104/pp.118.4.1379

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, M., Liu, S., Takano, T., and Zhang, X., The interaction between AtMT2b and AtVDAC3 affects the mitochondrial membrane potential and reactive oxygen species generation under NaCl stress in Arabidopsis, Planta, 2019, vol. 249, p. 417. https://doi.org/10.1007/s00425-018-3010-y

    Article  CAS  PubMed  Google Scholar 

  34. Cho, U.-H. and Seo, N.-H., Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation, Plant Sci., 2005, vol. 168, p. 113. https://doi.org/10.1016/j.plantsci.2004.07.021

    Article  CAS  Google Scholar 

  35. Huang, L., Hu, C., Cai, W., Zhu, Q., Gao, B., Zhang, X., and Ren, C., Fumarylacetoacetate hydrolase is involved in salt stress response in Arabidopsis, Planta, 2018, vol. 248, p. 499. https://doi.org/10.1007/s00425-018-2907-9

    Article  CAS  PubMed  Google Scholar 

  36. Bou, R., Codony, R., Tres, A., Decker, E.A., and Guardiola, F., Determination of hydroperoxides in foods and biological samples by the ferrous oxidation–xylenol orange method: A review of the factors that influence the method’s performance, Anal. Biochem., 2008, vol. 377, p. 1. https://doi.org/10.1016/j.ab.2008.02.029

    Article  CAS  PubMed  Google Scholar 

  37. Cheeseman, J.M., Hydrogen peroxide concentrations in leaves under natural conditions, J. Exp. Bot., 2006, vol. 57, p. 2435. https://doi.org/10.1093/jxb/erl004

    Article  CAS  PubMed  Google Scholar 

  38. Avramova, V., AbdElgawad, H., Zhang, Z., Fotschki, B., Casadevall, R., Vergauwen, L., Knapen, D., Taleisnik, E., Guisez, Y., Asard, H., and Beemster, G.T.S., Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone, Plant Physiol., 2015, vol. 169, p. 1382. https://doi.org/10.1104/pp.15.00276

    Article  CAS  PubMed  Google Scholar 

  39. AbdElgawad, H., Avramova, V., Baggerman, G., Van Raemdonck, G., Valkenborg, D., Van Ostade, X., Guisez, Y., Prinsen, E., Asard, H., Van den Ende, W., and Beemster, G.T.S., Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize, Plant Cell Environ., 2020, vol. 43, p. 2254. https://doi.org/10.1111/pce.13813

    Article  CAS  PubMed  Google Scholar 

  40. Grabelnykh, O.I., Yakovenko, K. V., Polyakova, E.A., Korsukova, A. V., Stepanov, A. V., Fedotova, O.A., Zabanova, N.S., Lyubushkina, I. V., Pobezhimova, T.P., and Borovskii, G.B., Functioning of mitochondria in transgenic potato tubers with the gox gene for glucose oxidase from Penicillium funiculosum during different storage periods, Russ. J. Plant Physiol., 2022, vol. 69, p. 112. https://doi.org/10.1134/S1021443722060097

    Article  CAS  Google Scholar 

  41. Xue, T., Li, X., Zhu, W., Wu, C., Yang, G., and Zheng, C., Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast, J. Exp. Bot., 2008, vol. 60, p. 339. https://doi.org/10.1093/jxb/ern291

    Article  CAS  PubMed  Google Scholar 

  42. Guo, Z., Wang, F., Xiang, X., Ahammed, G.J., Wang, M., Onac, E., Zhou, J., Xia, X., Shi, K., Yin, X., Chen, K., Yu, J., Foyer, C.H., and Zhou, Y., Systemic induction of photosynthesis via illumination of the shoot apex is mediated by phytochrome B, Plant Physiol., 2016, vol. 172, p. 1259. https://doi.org/10.1104/pp.16.01202

    Article  CAS  PubMed  Google Scholar 

  43. Joo, J.H., Bae, Y.S., and Lee, J.S., Role of auxin-induced reactive oxygen species in root gravitropism, Plant Physiol., 2001, vol. 126, p. 1055. https://doi.org/10.1104/pp.126.3.1055

    Article  CAS  PubMed  Google Scholar 

  44. Yarullina, L.G., Akhatova, A.R., Yarullina, L.M., and Kasimova, R.I., Effect of salicylic and jasmonic acids on the content of hydrogen peroxide and transcriptional activity of the genes encoding defense proteins in wheat plants infected with Tilletia caries (DC.) Tull., Russ. J. Plant Physiol., 2018, vol. 65, p. 412. https://doi.org/10.1134/S1021443718020097

    Article  CAS  Google Scholar 

  45. Campos, F.V., Oliveira, J.A., Pereira, M.G., and Farnese, F.S., Nitric oxide and phytohormone interactions in the response of Lactuca sativa to salinity stress, Planta, 2019, vol. 250, p. 1475. https://doi.org/10.1007/s00425-019-03236-w

    Article  CAS  PubMed  Google Scholar 

  46. Silina, E.V., Tabalenkova, G.N., and Golovko, T.K., Lipid peroxidation rates, hydrogen peroxide content, and superoxide dismutase activity in leaves of a facultative CAM plant Hylotelephium triphyllum (Haw.) Holub and a C3 plant Plantago media L. under natural environmental conditions, Russ. J. Plant Physiol., 2021, vol. 68, p. 754. https://doi.org/10.1134/S102144372104018X

    Article  CAS  Google Scholar 

  47. Yoshida, C.H.P., Pacheco, A.C., de Marcos Lapaz, A., de Souza Ferreira, C., Dal-Bianco, M., Viana, J.M.S., and Ribeiro, C., Tolerance mechanisms to aluminum in popcorn inbred lines involving aluminum compartmentalization and ascorbate–glutathione redox pathway, Planta, 2023, vol. 257, p. 28. https://doi.org/10.1007/s00425-022-04062-3

    Article  CAS  PubMed  Google Scholar 

  48. Sharova, E. and Romanova, A., Ascorbate in the apoplast of elongating plant cells, Biol. Commun., 2018, vol. 63, p. 77. https://doi.org/10.21638/spbu03.2018.109

    Article  Google Scholar 

  49. Sharova, E.I., Medvedev, S.S., and Demidchik, V.V., Ascorbate in the apoplast: Metabolism and functions, Russ. J. Plant Physiol., 2020, vol. 67, p. 207. https://doi.org/10.1134/S1021443720020156

    Article  CAS  Google Scholar 

  50. Sharova, E., Bilova, T., Tsvetkova, E., Smolikova, G., Frolov, A., and Medvedev, S., Red light-induced inhibition of maize (Zea mays) mesocotyl elongation: evaluation of apoplastic metabolites, Funct. Plant Biol., 2023, vol. 50, p. 532. https://doi.org/10.1071/FP22181

    Article  CAS  PubMed  Google Scholar 

  51. Terashima, I., Noguchi, K., Itoh-Nemoto, T., Park, Y.-M., Kuhn, A., and Tanaka, K., The cause of PSI photoinhibition at low temperatures in leaves of Cucumis sativus, a chilling-sensitive plant, Physiol. Plant., 1998, vol. 103, p. 295. https://doi.org/10.1034/j.1399-3054.1998.1030301.x

    Article  CAS  Google Scholar 

  52. Baxter-Burrell, A., Yang, Z., Springer, P.S., and Bailey-Serres, J., RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance, Science, 2002, vol. 296, p. 2026. https://doi.org/10.1126/science.1071505

    Article  CAS  PubMed  Google Scholar 

  53. Yang, L.-X., Wang, R.-Y., Ren, F., Liu, J., Cheng, J., and Lu, Y.-T., AtGLB1 enhances the tolerance of Arabidopsis to hydrogen peroxide stress, Plant Cell Physiol., 2005, vol. 46, p. 1309. https://doi.org/10.1093/pcp/pci140

    Article  CAS  PubMed  Google Scholar 

  54. Schaferling, M., Grogel, D.B.M., and Schreml, S., Luminescent probes for detection and imaging of hydrogen peroxide, Microchim. Acta, 2011, vol. 174, p. 1. https://doi.org/10.1007/s00604-011-0606-3

    Article  CAS  Google Scholar 

  55. Jiang, J., Su, M., Wang, L., Jiao, C., Sun, Z., Cheng, W., Li, F., and Wang, C., Exogenous hydrogen peroxide reversibly inhibits root gravitropism and induces horizontal curvature of primary root during grass pea germination, Plant Physiol. Biochem., 2012, vol. 53, p. 84. https://doi.org/10.1016/j.plaphy.2012.01.017

    Article  CAS  PubMed  Google Scholar 

  56. Jiao, C.-J., Jiang, J.-L., Li, C., Ke, L.-M., Cheng, W., Li, F.-M., Li, Z.-X., and Wang, C.-Y., β-ODAP accumulation could be related to low levels of superoxide anion and hydrogen peroxide in Lathyrus sativus L., Food Chem. Toxicol., 2011, vol. 49, p. 556. https://doi.org/10.1016/j.fct.2010.05.054

    Article  CAS  PubMed  Google Scholar 

  57. Okuda, T., Matsuda, Y., Yamanaka, A., and Sagisaka, S., Abrupt Increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment, Plant Physiol., 1991, vol. 97, p. 1265. https://doi.org/10.1104/pp.97.3.1265

    Article  CAS  PubMed  Google Scholar 

  58. Kairong, C., Gengsheng, X., Xinmin, L., Gengmei, X., and Yafu, W., Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum L., Plant Sci., 1999, vol. 146, p. 9. https://doi.org/10.1016/S0168-9452(99)00087-4

    Article  Google Scholar 

  59. Ben Rejeb, K., Lefebvre-De Vos, D., Le Disquet, I., Leprince, A., Bordenave, M., Maldiney, R., Jdey, A., Abdelly, C., and Savoure, A., Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana, New Phytologist, 2015, vol. 208, p. 1138. https://doi.org/10.1111/nph.13550

    Article  CAS  PubMed  Google Scholar 

  60. Ngo, T.T. and Lenhoff, H.M., A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions, Anal. Biochem., 1980, vol. 105, p. 389. https://doi.org/10.1016/0003-2697(80)90475-3

    Article  CAS  PubMed  Google Scholar 

  61. Piquery, L., Davoine, C., Huault, C., and Billard, J.-P., Senescence of leaf sheaths of ryegrass stubble: changes in enzyme activities related to H2O2 metabolism, Plant Growth Regul., 2000, vol. 30, p. 71. https://doi.org/10.1023/A:1006308928018

    Article  CAS  Google Scholar 

  62. Bailly, C. and Kranner, I., Analyses of reactive oxygen species and antioxidants in relation to seed longevity and germination, Methods Mol. Biol., 2011, p. 343. https://doi.org/10.1007/978-1-61779-231-1_20

  63. Visscher, A.M., Yeo, M., Gomez Barreiro, P., Stuppy, W., Latorre Frances, A., Di Sacco, A., Seal, C.E., and Pritchard, H.W., Dry heat exposure increases hydrogen peroxide levels and breaks physiological seed coat-imposed dormancy in Mesembryanthemum crystallinum (Aizoaceae) seeds, Environ. Exp. Bot., 2018, vol. 155, p. 272. https://doi.org/10.1016/j.envexpbot.2018.07.009

    Article  CAS  Google Scholar 

  64. Garcia-Esquivel, Y., Mercado-Flores, Y., Anducho-Reyes, M.A., Alvarez-Cervantes, J., Wobeser, E.A., Marina-Ramirez, A.I., and Tellez-Jurado, A., 3-Methyl-2-benzothiazolinone hydrazone and 3-dimethylamino benzoic acid as substrates for the development of polyphenoloxidase and phenoloxidase activity by zymograms, 3 biotech., 2021, vol. 11, p. 39. https://doi.org/10.1007/s13205-020-02622-6

  65. Patterson, B.D., MacRae, E.A., and Ferguson, I.B., Estimation of hydrogen peroxide in plant extracts using titanium (IV), Anal. Biochem., 1984, vol. 139, p. 487.

    Article  CAS  PubMed  Google Scholar 

  66. Haider, M.S., Jogaiah, S., Pervaiz, T., Yanxue, Z., Khan, N., and Fang, J., Physiological and transcriptional variations inducing complex adaptive mechanisms in grapevine by salt stress, Environ. Exp. Bot., 2019, vol. 162, p. 455. https://doi.org/10.1016/j.envexpbot.2019.03.022

    Article  CAS  Google Scholar 

  67. McGee, T., Shahid, M.A., Beckman, T.G., Chaparro, J.X., Schaffer, B., and Sarkhosh, A., Physiological and biochemical characterization of six Prunus rootstocks in response to flooding, Environ. Exp. Bot., 2021, vol. 183, p. 104368. https://doi.org/10.1016/j.envexpbot.2020.104368

    Article  CAS  Google Scholar 

  68. Zhou, B., Wang, J., Guo, Z., Tan, H., and Zhu, X., A simple colorimetric method for determination of hydrogen peroxide in plant tissues, Plant Growth Regul., 2006, vol. 49, p. 113. https://doi.org/10.1007/s10725-006-9000-2

    Article  CAS  Google Scholar 

  69. Lu, S., Song, J., and Campbell-Palmer, L., A modified chemiluminescence method for hydrogen peroxide determination in apple fruit tissues, Sci. Hortic., 2009, vol. 120, p. 336. https://doi.org/10.1016/j.scienta.2008.11.003

    Article  CAS  Google Scholar 

  70. Brennan, T. and Frenkel, C., Involvement of hydrogen peroxide in the regulation of senescence in pear, Plant Physiol., 1977, vol. 59, p. 411. https://doi.org/10.1104/pp.59.3.411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xia, X.-J., Wang, Y.-J., Zhou, Y.-H., Tao, Y., Mao, W.-H., Shi, K., Asami, T., Chen, Z., and Yu, J.-Q., Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber, Plant Physiol., 2009, vol. 150, p. 801. https://doi.org/10.1104/pp.109.138230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, H.-L., Lee, Z.-X., Chuang, T.-W., and Wu, H.-C., Effect of heat stress on oxidative damage and antioxidant defense system in white clover (Trifolium repens L.), Planta, 2021, vol. 254, p. 103. https://doi.org/10.1007/s00425-021-03751-9

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, A., Jiang, M., Zhang, J., Tan, M., and Hu, X., Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants, Plant Physiol., 2006, vol. 141, p. 475. https://doi.org/10.1104/pp.105.075416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jiang, M. and Zhang, J., Effect of abscisic acid on active oxygen species, antioxidative defense system and oxidative damage in leaves of maize seedlings, Plant Cell Physiol., 2001, vol. 42, p. 1265. https://doi.org/10.1093/pcp/pce162

    Article  CAS  PubMed  Google Scholar 

  75. Li, M., Zhao, W., Du, Q., Xiao, H., Li, J., Wang, J., and Shang, F., Abscisic acid and hydrogen peroxide regulate proline homeostasis in melon seedlings under cold stress by forming a bidirectional closed loop, Environ. Exp. Bot., 2023, vol. 205, p. 105102. https://doi.org/10.1016/j.envexpbot.2022.105102

    Article  CAS  Google Scholar 

  76. Jana, S. and Choudhuri, M.A., Glycolate metabolism of three submersed aquatic angiosperms during ageing, Aquat. Bot., 1982, vol. 12, p. 345. https://doi.org/10.1016/0304-3770(82)90026-2

    Article  CAS  Google Scholar 

  77. Chang, C.J. and Kao, C.H., H2O2 metabolism during senescence of rice leaves: Changes in enzyme activities in light and darkness, Plant Growth Regul., 1998, vol. 25, p. 11.

    Article  CAS  Google Scholar 

  78. Lin, C.C. and Kao, C.H., Effect of NaCl stress on H2O2 metabolism in rice leaves, Plant Growth Regul., 2000, vol. 30, p. 151.

    Article  CAS  Google Scholar 

  79. Nahar, K., Hasanuzzaman, M., Alam, M.M., and Fujita, M., Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean, Biol. Plant, 2015, vol. 59, p. 745. https://doi.org/10.1007/s10535-015-0542-x

    Article  CAS  Google Scholar 

  80. Chang, T., Xi, Q., Wei, X., Xu, L., Wang, Q., Fu, J., Ling, C., Zuo, Y., Zhao, Y., He, H., and Zhao, Y., Rhythmical redox homeostasis can be restored by exogenous melatonin in hulless barley (Hordeum vulgare L.var. nudum) under cold stress, Environ. Exp. Bot., 2022, vol. 194, p. 104756. https://doi.org/10.1016/j.envexpbot.2021.104756

    Article  CAS  Google Scholar 

  81. Kuo, M.C. and Kao, C.H., Aluminum effects on lipid peroxidation and antioxidative enzyme activities in rice leaves, Biol. Plant., 2003, vol. 46, p. 149.

    Article  CAS  Google Scholar 

  82. Junglee, S., Urban, L., Sallanon, H., and Lopez-Lauri, F., Optimized assay for hydrogen peroxide determination in plant tissue using potassium iodide, Am. J. Anal. Chem., 2014, vol. 05, p. 730. https://doi.org/10.4236/ajac.2014.511081

    Article  CAS  Google Scholar 

  83. Meng, L., Hofte, M., and Van Labeke, M.-C., Leaf age and light quality influence the basal resistance against Botrytis cinerea in strawberry leaves, Environ. Exp. Bot., 2019, vol. 157, p. 35. https://doi.org/10.1016/j.envexpbot.2018.09.025

    Article  Google Scholar 

  84. Chitarra, W., Maserti, B., Gambino, G., Guerrieri, E., and Balestrini, R., Arbuscular mycorrhizal symbiosis-mediated tomato tolerance to drought, Plant Signal. Behav., 2016, vol. 11, p. e1197468. https://doi.org/10.1080/15592324.2016.1197468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu, X.-Q., Cheng, S., Aroca, R., Zou, Y.-N., and Wu, Q.-S., Arbuscular mycorrhizal fungi induce flavonoid synthesis for mitigating oxidative damage of trifoliate orange under water stress, Environ. Exp. Bot., 2022, vol. 204, p. 105089. https://doi.org/10.1016/j.envexpbot.2022.105089

    Article  CAS  Google Scholar 

  86. Alexieva, V., Sergiev, I., Mapelli, S., and Karanov, E., The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat, Plant Cell Environ., 2001, vol. 24, p. 1337. https://doi.org/10.1046/j.1365-3040.2001.00778.x

    Article  CAS  Google Scholar 

  87. Hediji, H., Kharbech, O., Massoud Ben, M., Boukari, N., Debez, A., Chaibi, W., Chaoui, A., and Djebali, W., Salicylic acid mitigates cadmium toxicity in bean (Phaseolus vulgaris L.) seedlings by modulating cellular redox status, Environ. Exp. Bot., 2021, vol. 186, p. 104432. https://doi.org/10.1016/j.envexpbot.2021.104432

    Article  CAS  Google Scholar 

  88. Silva, V.M., Boleta, E.H.M., Lanza, M.G.D.B., Lavres, J., Martins, J.T., Santos, E.F., dos Santos, F.L.M., Putti, F.F., Junior, E.F., White, P.J., Broadley, M.R., de Carvalho, H.W.P., and dos Reis, A.R., Physiological, biochemical, and ultrastructural characterization of selenium toxicity in cowpea plants, Environ. Exp. Bot., 2018, vol. 150, p. 172. https://doi.org/10.1016/j.envexpbot.2018.03.020

    Article  CAS  Google Scholar 

  89. Warm, E. and Laties, G.G., Quantification of hydrogen peroxide in plant extracts by the chemiluminescence reaction with luminol, Phytochemistry, 1982, vol. 21, p. 827. https://doi.org/10.1016/0031-9422(82)80073-3

    Article  CAS  Google Scholar 

  90. Perez, F.J. and Rubio, S., An Improved chemiluminescence method for hydrogen peroxide determination in plant tissues, Plant Growth Regul., 2006, vol. 48, p. 89. https://doi.org/10.1007/s10725-005-5089-y

    Article  CAS  Google Scholar 

  91. Kawano, T. and Muto, S., Mechanism of peroxidase actions for salicylic acid-induced generation of active oxygen species and an increase in cytosolic calcium in tobacco cell suspension culture, J. Exp. Bot., 2000, vol. 51, p. 685. https://doi.org/10.1093/jxb/51.345.685

    Article  CAS  PubMed  Google Scholar 

  92. Baker, C.J., Harmon, G.L., Glazener, J.A., and Orlandi, E.W., A noninvasive technique for monitoring peroxidative and H2O2-scavenging activities during interactions between bacterial plant pathogens and suspension cells, Plant Physiol., 1995, vol. 108, p. 353. https://doi.org/10.1104/pp.108.1.353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Voothuluru, P. and Sharp, R.E., Apoplastic hydrogen peroxide in the growth zone of the maize primary root under water stress. I. Increased levels are specific to the apical region of growth maintenance, J. Exp. Bot., 2013, vol. 64, p. 1223. https://doi.org/10.1093/jxb/ers277

    Article  CAS  PubMed  Google Scholar 

  94. Sohail, M.N., Quinn, A.A., Blomstedt, C.K., and Gleadow, R.M., Dhurrin increases but does not mitigate oxidative stress in droughted Sorghum bicolor, Planta, 2022, vol. 255, p. 74. https://doi.org/10.1007/s00425-022-03844-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. DeLeon, E.R., Gao, Y., Huang, E., Arif, M., Arora, N., Divietro, A., Patel, S., and Olson, K.R., A case of mistaken identity: are reactive oxygen species actually reactive sulfide species?, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2016, vol. 310, p. R?549. https://doi.org/10.1152/ajpregu.00455.2015

  96. Niemeyer, J., Scheuring, D., Oestreicher, J., Morgan, B., and Schroda, M., Real-time monitoring of subcellular H2O2 distribution in Chlamydomonas reinhardtii, Plant Cell, 2021, vol. 33, p. 2935. https://doi.org/10.1093/plcell/koab176

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ransy, C., Vaz, C., Lombès, A., and Bouillaud, F., Use of H2O2 to cause oxidative stress, the catalase issue, Int. J. Mol. Sci., 2020, vol. 21, p. 9149. https://doi.org/10.3390/ijms21239149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhou, A., Ma, H., Feng, S., Gong, S., and Wang, J., Novel sugar transporter from Dianthus spiculifolius, DsSWEET12, affects sugar metabolism and confers osmotic and oxidative stress tolerance in Arabidopsis, Int. J. Mol. Sci., 2018, vol. 19, p. 497. https://doi.org/10.3390/ijms19020497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Du, M., Wang, Y., Chen, H., and Han, R., Actin filaments mediated root growth inhibition by changing their distribution under UV-B and hydrogen peroxide exposure in Arabidopsis, Biol. Res., 2020, vol. 53, p. 54. https://doi.org/10.1186/s40659-020-00321-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Biswas, M.S. and Mano, J., Lipid peroxide-derived short-chain carbonyls mediate hydrogen peroxide-induced and salt-induced programmed cell death in plants, Plant Physiol., 2015, vol. 168, p. 885. https://doi.org/10.1104/pp.115.256834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nurnaeimah, N., Mat, N., Suryati Mohd, K., Badaluddin, N.A., Yusoff, N., Sajili, M.H., Mahmud, K., Mohd Adnan, A.F., and Khandaker, M.M., The effects of hydrogen peroxide on plant growth, mineral accumulation, as well as biological and chemical properties of Ficus deltoidei, Agronomy, 2020, vol. 10, p. 599. https://doi.org/10.3390/agronomy10040599

    Article  CAS  Google Scholar 

  102. Fangue-Yapseu, G.Y., Tola, A.J., and Missihoun, T.D., Proteome-wide analysis of hydrogen peroxide-induced protein carbonylation in Arabidopsis thaliana, Front. Plant Sci., 2022, vol. 13, p. 1049681. https://doi.org/10.3389/fpls.2022.1049681

    Article  PubMed  PubMed Central  Google Scholar 

  103. Muthuramalingam, M., Matros, A., Scheibe, R., Mock, H.-P., and Dietz, K.-J., The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo, Front. Plant Sci., 2013, vol. 4, p. 54. https://doi.org/10.3389/fpls.2013.00054

    Article  PubMed  PubMed Central  Google Scholar 

  104. Verniquet, F., Gaillard, J., Neuburger, M., and Douce, R., Rapid inactivation of plant aconitase by hydrogen peroxide, Biochem. J., 1991, vol. 276, p. 643. https://doi.org/10.1042/bj2760643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant from the Russian Science Foundation, no. 20-16-00086-p (https://rscf.ru/ project/20-16-00086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Medvedev.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by A. Bulychev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: FOX method—ferrous oxidation–xylenol orange method; ROS—reactive oxygen species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharova, E.I., Smolikova, G.N. & Medvedev, S.S. Determining Hydrogen Peroxide Content in Plant Tissue Extracts. Russ J Plant Physiol 70, 216 (2023). https://doi.org/10.1134/S1021443724603744

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443724603744

Keywords:

Navigation