Skip to main content
Log in

Organic Osmolytes Regulate Substomatal Apoplast Water Potential in Pea (Pisum sativum L.) Leaves during Mild Drought

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

We investigated the role of organic osmolytes in regulating substomatal apoplast water potential (ψwa) in the leaves of pea (Pisum sativum L.) plants grown under normal or doubled CO2 concentrations exposed to a 3-day drought. The sucrose content, the leading organic osmolyte, was higher in the leaves of drought-stressed plants grown under doubled CO2 concentration than in those grown under normal CO2 concentration. However, the content of proline and reducing sugars (glucose + fructose) was higher in the leaves of plants grown under normal CO2 concentration. Interestingly, the substomatal apoplast ψwa decreased 2-fold under normal CO2 concentration while remaining unchanged under doubled CO2 concentration. Similarity in the decline of ψwa and increase of proline and reducing sugars in leaves under drought indicates their specific role as apoplast osmotic agents that help diminish the turgor of guard cells by lowering ψwa, resulting in stomatal closure and diminish leaf water loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Boretti, A. and Florentine, S., Atmospheric CO2 concentration and other limiting factors in the growth of C3 and C4 plants, Plants, 2019, vol. 8, p. 92. https://doi.org/10.3390/plants8040092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hussain, S., Ulhassan, Z., Brestic, M., Zivcak, M., Zhou, W., Allakhverdiev, S.I., Yang, X., Safdar, M.E., Yang, W., and Liu, W., Photosynthesis research under climate change, Photosynth. Res., 2021, vol. 150, p. 5. https://doi.org/10.1007/s11120-021-00861-z

    Article  CAS  PubMed  Google Scholar 

  3. Dammour, G., Simonneau, Th., Cochard, H., and Urban, L., An overview of models of stomatal conductance at leaf level, Plant, Cell Environ., 2010, vol. 33, p. 1419. https://doi.org/10.1111/j.1365-3040.2010.02181.x

    Article  Google Scholar 

  4. Buckley, T.N., Modelling stomatal conductance, Plant Physiol., 2017, vol. 174, p. 572. https://doi.org/10.1104/pp.16.01772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Farquhar, G.D., Feedforward responses of stomata to humidity, Aust. J. Plant Physiol., 1978, vol. 5, p. 787. https://doi.org/10.1071/PP9780787

    Article  Google Scholar 

  6. Monteith, J.L., A reinterpretation of the stomatal response to humidity, Plant, Cell Environ., 1995, vol. 18, p. 357. https://doi.org/10.1111/j.1365-3040.1995.tb00371.x

    Article  Google Scholar 

  7. Buckley, T.N., The control of stomata by water balance, New Phytol., 2005, vol. 168, p. 275. https://doi.org/10.1111/j.1469-8137.2005.01543.x

    Article  CAS  PubMed  Google Scholar 

  8. Shope, J.C., Peak, D., and Mott, K.A., Stomatal responses to humidity in isolated epidermes, Plant, Cell Environ., 2008, vol. 31, p. 1290. https://doi.org/10.1111/j.1365-3040.2008.01844.x

    Article  PubMed  Google Scholar 

  9. Mott, K.A., Leaf hydraulic conductivity and stomatal responses to humidity in amphistomatous leaves, Plant, Cell Environ., 2007, vol. 30, p. 1444. https://doi.org/10.1111/j.1365-3040.2007.01720.x

    Article  CAS  PubMed  Google Scholar 

  10. Mott, K.A. and Peak, D., Stomatal responses to humidity and temperature in darkness, Plant, Cell Environ., 2010, vol. 33, p. 1084. https://doi.org/10.1111/j.1365-3040.2010.02129.x

    Article  PubMed  Google Scholar 

  11. Peak, D. and Mott, K.A., A new, vapor-phase mechanism for stomatal responses to humidity and temperature, Plant, Cell Environ., 2011, vol. 34, p. 162. https://doi.org/10.1111/j.1365-3040.2010.02234.x

    Article  PubMed  Google Scholar 

  12. Voronin, P.Yu., Rakhmankulova, Z.F., Shuyskaya, E.V., Maevskaya, S.N., Nikolaeva, M.K., Maksimov, A.P., Maximov, T.Chr., Myasoedov, N.A., Balnokin, Yu.V., Rymar, V.P., Valdayskih, V.V., and Kuznetsov, V.V., New method for quantitative determination of water potential of mesophyll cell’ apoplast in substomatal cavity of the leaf, Russ. J. Plant Physiol., 2017, vol. 64, p. 452. https://doi.org/10.1134/S1021443717020133

    Article  CAS  Google Scholar 

  13. Ashraf, M. and Harris, P.J.C., Photosynthesis under stressful environments: An overview, Photosynthetica, 2013, vol. 51, p. 163. https://doi.org/10.1007/s11099-013-0021-6

    Article  CAS  Google Scholar 

  14. Sharma, A., Kumar, V., Shahzad, B., Ramakrishnan, M., Singh Sidhu, G.P., Bali, A.S., Handa, N., Kapoor, D., Yadav, P., Khanna, K., Bakshi, P., Rehman, A., Kohli, S.K., Khan, E.A., Parihar, R.D., et al., Photosynthetic response of plants under different abiotic stresses: a review, J. Plant Growth Reg., 2020, vol. 39, p. 509. https://doi.org/10.1007/s00344-019-10018-x

    Article  CAS  Google Scholar 

  15. Pelleschi, S., Rocher, J.-P., and Prioul, J.-L., Effect of water restriction on carbohydrate metabolism and photosynthesis in mature maize leaves, J. Cell Environ., 1997, vol. 20, p. 493. https://doi.org/10.1046/j.1365-3040.1997.d01-89.x

    Article  CAS  Google Scholar 

  16. Nikolaeva, M.K., Maevskaya, S.N., and Voronin, P.Yu., Photosynthetic CO2/H2O gas exchange and dynamics of carbohydrates content in maize leaves under drought, Russ. J. Plant Physiol., 2017, vol. 64, p. 536. https://doi.org/10.1134/S1021443717030116

    Article  CAS  Google Scholar 

  17. Malinovsky, A.V., Akanov, E.N., and Voronin, P.Yu., A vegetation climatic unit for studying the impact on higher plants of an increased CO2 concentration in comparison with the atmospheric CO2 concentration, Russ. J. Plant Physiol., 2020, vol. 67, p. 194. https://doi.org/10.1134/S1021443720010112

    Article  CAS  Google Scholar 

  18. Bates, L.S., Waldren, R., and Teare, I.D., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, p. 205. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  19. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts, Arch. Biochem. Biophys., 1968, vol. 125, p. 180. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  Google Scholar 

  20. Lichtenthaler, H.K., Chlorophyll and carotenoids: pigments of photosynthetic biomembranes, Method. Enzymol., 1987, vol. 148, p. 350. https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  21. Turkina, M.B. and Sokolova, S.V., Methods for monosaccharide and oligosaccharide determination, in: Biokhim. Met. v Fiz. Rast., Pavlinova O.A., Ed., Moscow: Nauka, 1971, p. 7.

    Google Scholar 

  22. Voronin, P.Yu., Experimental installation for measurements of chlorophyll fluorescence, CO2 exchange, and transpiration in a detached leaf, Russ. J. Plant Physiol., 2014, vol. 61, p. 269. https://doi.org/10.1134/S1021443714020174

    Article  CAS  Google Scholar 

  23. Demmig-Adams, B., Polutchko, S.K., Zenir, M.C., Fourounjian, P., Stewart, J.J., López-Pozo, M., and Adams III, W.W., Intersections: photosynthesis, abiotic stress, and the plant microbiome, Photosynthetica, 2022, vol. 60, p. 59. https://doi.org/10.32615/ps.2021.065

    Article  CAS  Google Scholar 

  24. Salazar-Parra, C., Aguirreolea, J., Sánchez-Díaz, M., Irigoyen, J.J., and Morales, F., Photosynthetic response of Tempranillo grapevine to climate change scenarios, Ann. Applied Biology, 2012, vol. 161, p. 277. https://doi.org/10.1111/j.1744-7348.2012.00572.x

    Article  CAS  Google Scholar 

  25. Ghosh, U.K., Islam, M.N., Siddiqui, M.N., Cao, X., and Khan, M.A.R., Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms, Plant Biol. (Stuttg), 2022, vol. 24, p. 227. https://doi.org/10.1111/plb.13363

    Article  CAS  PubMed  Google Scholar 

  26. Szabados, L. and Savoure, A., Proline: A multifunctional amino acid, Trends Plant Sci., 2010, vol. 15, p. 89. https://doi.org/10.1016/j.tplants.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  27. Sharma, S., Villamor, J.G., and Verslues, P.E., Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential, Plant Physiol., 2011, p. 157, p. 292. https://doi.org/10.1104/pp.111.183210

  28. Borawska-Jarmułowicz, B., Mastalerczuk, G., Dąbrowski, P., Kalaji, H.M., and Wytrążek, K., Improving tolerance in seedlings of some Polish varieties of Dactylis glomerata to water deficit by application of simulated drought during seed germination, Photosynthetica, 202, vol. 58, p. 540. https://doi.org/10.32615/ps.2020.007

  29. Voronin, P.Yu., Maevskaya, S.N., and Nikolaeva, M.K., Physiological and molecular responses (Zea mays L.) plants to drought and rehydration, Photosynthetica, 2019, vol. 57, p. 850. https://doi.org/10.32615/ps.2019.101

    Article  CAS  Google Scholar 

  30. Scharwies, J.D. and Dinneny, J.R., Water transport, perception, and response in plants, J. Plant Res., 2019, vol. 132, p. 311. https://doi.org/10.1007/s10265-019-01089-8

    Article  CAS  PubMed  Google Scholar 

  31. Sánchez, F.J., Manzanares, M., de Andres, E.F., Tenorio, J.L., and Ayerbe, L., Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress, Field Crops Res., 1998, vol. 59, p. 225. https://doi.org/10.1016/S0378-4290(98)00125-7

    Article  Google Scholar 

  32. Takahashi, F., Kuromori, T., Urano, K., Yamaguchi-Shinozaki, K., and Shinozaki, K., Drought stress responses and resistance in plants: From cellular responses to long-distance intercellular communication, Front. Plant Sci., 2020, vol. 11, p. 556972. https://doi.org/10.3389/fpls.2020.556972

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sehgal, A., Sita, K., Siddique, K.H., Kumar, R., Bhogireddy, S., Varshney, R.K., HanumanthaRao, B., Nair, R.M., Prasad, P.V.V., and Nayyar, H., Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality, Front. Plant Sci., 2018, vol. 9, p. 1705. https://doi.org/10.3389/fpls.2018.01705

    Article  PubMed  PubMed Central  Google Scholar 

  34. Muhammadkhani, N. and Heidari, R., Drought-induced accumulation of soluble sugars and proline in two maize varieties, World Appl. Sci. J., 2008, vol. 3, p. 448.

    Google Scholar 

  35. Morales, F., Ancín, M., Fakhet, D., González-Torralba, J., Gámez, A.L., Seminario, A., Soba, D., Ben Mariem, S., Garriga, M., and Aranjuelo, I., Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement, Plants, 2020, vol. 9, p. 88. https://doi.org/10.3390/plants9010088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Du, Y., Zhao, Q., Chen, L., Yao, X., Zhang, W., Zhang, B., and Xie, F., Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings, Plant Physiol. Biochem., 2020, vol. 146, p. 1. https://doi.org/10.1016/j.plaphy.2019.11.003

    Article  CAS  PubMed  Google Scholar 

  37. Sicher, R.C. and Barnaby, J.Y., Impact of carbon dioxide enrichment on the responses maize leaf transcripts and metabolites to water stress, Physiol. Plant., 2012, vol. 144, p. 238. https://doi.org/10.1111/j.1399-3054.2011.01555.x

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. Nikolaeva M.K. for her help in conducting the biochemical analysis.

Funding

The research was conducted within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (Theme no. 122042700044-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Yu. Voronin.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Additional information

Abbreviations: Car—carotenoids; Chl—chlorophyll; DS—drought-stress; E—transpiration rate; FC—field capacity; FM—fresh mass; Fru—fructose; Glu—glucose; gs—stomatal conductance; LPO—lipid peroxidation; MDA—malondialdehyde; PN—net photosynthetic rate; RH—relative humidity; ROS—reactive oxygen species; Suc—sucrose; ψwa—water potential of mesophyll cells’ apoplast in substomatal cavity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronin, P.Y., Maevskaya, S.N., Malinovsky, A.V. et al. Organic Osmolytes Regulate Substomatal Apoplast Water Potential in Pea (Pisum sativum L.) Leaves during Mild Drought. Russ J Plant Physiol 70, 123 (2023). https://doi.org/10.1134/S1021443723601167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723601167

Keywords:

Navigation