Skip to main content
Log in

The Membrane Nanodomain Flot1 Protein Participates in Formation of the Early Endosomes in the Root Cells of Arabidopsis thaliana

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Plants are subjected to various stress factors within their lifespan. In this respect, the plasma membrane is a principal cell compartment responsible for plant adaptations to stresses. It is capable of remodeling its protein composition by means of endocytosis. In the plants, the main mode of this process is a clathrin-mediated endocytosis. Several clathrin-independent pathways are also known; these alternative mechanisms involve Flot1 protein. In the present research, the role of Flot1 in the endocytosis process was examined in seedling roots of a wild type and an Atflot1ko knockout mutant of Arabidopsis thaliana (L.) Heynh. Light microscopy with an FM4-64 lipophilic probe and transmission electron microscopy were used. It was found that endocytosis was arrested in the root cells of the wild type after a simultaneous treatment of the roots with an inhibitor of clathrin-mediated endocytosis (1-naphthylacetic acid) and the agent depleting the plasma membrane of sterols (methyl-β-cyclodextrin). In this case, such morphological change as reduction in cytoplasm vesiculation (including the early endosomes, the small vesicles originated from the agranular ER, the microvacuoles from its fragments, and the clathrin vesicles) was observed. The vesiculation was diminished in both the control and the stressed plants (exposed to 100 mM NaCl). In the Atflot1ko mutant, the cisterns of the Golgi complex closed up to a ring, and the process of formation of the early endosomes was completely abolished under these conditions. It is suggested that, in the roots of A. thaliana exposed to the inhibitors, the microdomain-associated Flot1 protein of the plasma membrane conserves the structure of the Golgi complex and its capacity to build early endosomes on the trans-side. In addition, the protein appears to participate in formation of the early endosomes from the trans-Golgi network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Rodas-Junco, B.A., Racagni-Di-Palma, G.E., Canul-Chan, M., Usorach, J., and Hernández-Sotomayor, S.M.T., Link between lipid second messengers and osmotic stress in plants, IJMS, 2021, vol. 22, p. 2658. https://doi.org/10.3390/ijms22052658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. López-Hernández, T., Haucke, V., and Maritzen, T., Endocytosis in the adaptation to cellular stress, Cell Stress, 2020, vol. 4, p. 230. .https://doi.org/10.15698/cst2020.10.232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ivanov, R. and Vert, G., Endocytosis in plants: Peculiarities and roles in the regulated trafficking of plant metal transporters, Biol. Cell, 2021, vol. 113, p. 1. https://doi.org/10.1111/boc.202000118

    Article  PubMed  Google Scholar 

  4. Paez Valencia, J., Goodman, K., and Otegui, M.S., Endocytosis and Endosomal Trafficking in Plants, Ann. Rev. Plant Biol., 2016, vol. 67, p. 309. https://doi.org/10.1146/annurev-arplant-043015-112242

    Article  CAS  Google Scholar 

  5. Fan, L., Li, R., Pan, J., Ding, Z., and Lin, J., Endocytosis and its regulation in plants, Trends Plant Sci., 2015, vol. 20, p. 388. https://doi.org/10.1016/j.tplants.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  6. Kaksonen, M. and Roux, A., Mechanisms of clathrin-mediated endocytosis, Nat. Rev. Mol. Cell Biol., 2018, vol. 19, p. 313. https://doi.org/10.1038/nrm.2017.132

    Article  CAS  PubMed  Google Scholar 

  7. Reynolds, G.D., Wang, C., Pan, J., and Bednarek, S.Y., Inroads into Internalization: five years of endocytic exploration, Plant Physiol., 2018, vol. 176, p. 208. https://doi.org/10.1104/pp.17.01117

    Article  CAS  PubMed  Google Scholar 

  8. Jelínková, A., Malínská, K., Simon, S., Kleine-Vehn, J., Pařezová, M., Pejchar, P., Kubeš, M., Martinec, J., Friml, J., Zažímalová, E., and Petrášek, J., Probing plant membranes with FM dyes: tracking, dragging or blocking?, Plant J., 2010, vol. 61, p. 883. https://doi.org/10.1111/j.1365-313X.2009.04102.x

    Article  CAS  PubMed  Google Scholar 

  9. Gadeyne, A., Sánchez-Rodríguez, C., Vanneste, S., Di Rubbo, S., Zauber, H., Vanneste, K., Van Leene, J., De Winne, N., Eeckhout, D., Persiau, G., Van De Slijke, E., Cannoot, B., Vercruysse, L., Mayers, J. R., Adamowski, M., et al., The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants, Cell, 2014, vol. 156, p. 691. https://doi.org/10.1016/j.cell.2014.01.039

    Article  CAS  PubMed  Google Scholar 

  10. Estevez, J.M., Plant cell expansion. Methods and protocols, MIMB, 2015, vol. 1242, p. 59. https://doi.org/10.1007/978-1-4939-1902-4

    Article  Google Scholar 

  11. Dhonukshe, P., Aniento, F., Hwang, I., Robinson, D.G., Mravec, J., Stierhof, Y.-D., and Friml, J., Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis, Curr. Biol., 2007, vol. 17, p. 520. https://doi.org/10.1016/j.cub.2007.01.052

    Article  CAS  PubMed  Google Scholar 

  12. Baral, A., Irani, N.G., Fujimoto, M., Nakano, A., Mayor, S., and Mathew, M.K., Salt-induced remodeling of spatially restricted clathrin-independent endocytic pathways in Arabidopsis root, Plant Cell, 2015, vol. 27, p. 1297. https://doi.org/10.1105/tpc.15.00154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boutte, Y., Jonsson, K., McFarlane, H.E., Johnson, E., Gendre, D., Swarup, R., Friml, J., Samuels, L., Robert, S., and Bhalerao, R.P., ECHIDNA-mediated post-Golgi trafficking of auxin carriers for differential cell elongation, Proc. Nat. Acad. Sci., 2013, vol. 110, p. 16259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ortiz-Zapater, E., Soriano-Ortega, E., Marcote, M.J., Ortiz-Masiá, D., and Aniento, F., Trafficking of the human transferrin receptor in plant cells: effects of tyrphostin A23 and brefeldin A, Plant J., 2006, vol. 48, p. 757. https://doi.org/10.1111/j.1365-313X.2006.02909.x

    Article  CAS  PubMed  Google Scholar 

  15. Paciorek, T., Zažímalová, E., Ruthardt, N., Petrášek, J., Stierhof, Y.D., Kleine-Vehn, J., Morris, D. A., Emans, N., Jürgens, G., Geldner, N., and Friml, J., Auxin inhibits endocytosis and promotes its own efflux from cells, Nature, 2005, vol. 435, p. 1251. https://doi.org/10.1038/nature03633

    Article  CAS  PubMed  Google Scholar 

  16. Robert, S., Kleine-Vehn, J., Barbez, E., Sauer, M., Paciorek, T., Baster, P., Vanneste, S., Zhang, J., Simon, S., Čovanová, M., Hayashi, K., Dhonukshe, P., Yang, Z., Bednarek, S.Y., Jones, A.M., et al., ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis, Cell, 2010, vol. 143, p. 111. https://doi.org/10.1016/j.cell.2010.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abas, L., Benjamins, R., Malenica, N., Paciorek, T., Wisniewska, J., Moulinier-Anzola, J.C., Sieberer, T., Friml, J., and Luschnig, C., Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism, Nat. Cell Bio-l., 2006, vol. 8, p. 249.

    Article  CAS  Google Scholar 

  18. Kitakura, S., Vanneste, S., Robert, S., Löfke, C., Teichmann, T., Tanaka, H., and Friml, J., Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis, Plant Cell, 2011, vol. 23, p. 1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, X., Wang, X., Yang, Y., Li, R., He, Q., Fang, X., Luu, D.T., Maurel, C., and Lin, J., Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation, Plant Cell, 2011, vol. 23, p. 3780. https://doi.org/10.1105/tpc.111.091454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Glebov, O.O., Bright, N.A., and Nichols, B.J., Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells, Nat. Cell. Biol., 2006, vol. 8, p. 46.

    Article  CAS  PubMed  Google Scholar 

  21. Li, R., Liu, P., Wan, Y., Chen, T., Wang, Q., Mettbach, U., Baluška, F., Šamaj, J., Fang, X., Lucas, W.J., and Lin, J., A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development, Plant Cell, 2012, vol. 24, p. 2105. https://doi.org/10.1105/tpc.112.095695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, L., Xing, J., and Lin, J., At the intersection of exocytosis and endocytosis in plants, New Phytol., 2019, vol. 224, p. 1479. https://doi.org/10.1111/nph.16018

    Article  CAS  PubMed  Google Scholar 

  23. Cao, Y., He, Q., Qi, Z., Zhang, Y., Lu, L., Xue, J., Li, J., and Li, R., Dynamics and endocytosis of Flot1 in Arabidopsis require CPI1 function, IJMS, 2020, vol. 21, p. 1552. https://doi.org/10.3390/ijms21051552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khalilova, L.A., Sergienko, O.V., Orlova, Y.V., Myasoedov, N.A., Karpichev, I.V., and Balnokin, Y.V., Arabidopsis thaliana mutant with t-DNA insertion in the Flot1 (At5g25250) gene promotor possesses increased resistance to NaCl, Russ. J. Plant Physiol., 2020, vol. 67, p. 275. https://doi.org/10.1134/S1021443720020077

    Article  CAS  Google Scholar 

  25. Saslowsky, D.E., Cho, J.A., Chinnapen, H., Massol, R.H., Chinnapen, D.J., Wagner, J.S., De Luca, H.E., Kam, W., Paw, B.H., and Lencer, W.I., Intoxication of zebra fish and mammalian cells by cholera toxin depends on the flotillin/reggie proteins but not Derlin-1 or -2, J. Clin. Invest., 2010, vol. 120, p. 4399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chadda, R., Howes, M.T., Plowman, S.J., Hancock, J.F., Parton, R.G., and Mayor, S., Cholesterol-sensitive cdc42 activation regulates actin polymerization for endocytosis via the GEEC pathway, Traffic, 2007, vol. 8, p. 702. https://doi.org/10.1111/j.1600-0854.2007.00565.x

    Article  CAS  PubMed  Google Scholar 

  27. Roche, Y., Gerbeau-Pissot, P., Buhot, B., Thomas, D., Bonneau, L., Gresti, J., Mongrand, S., Perrier-Cornet, J., and Simon-Plas, F., Depletion of phytosterols from the plant plasma membrane provides evidence for disruption of lipid rafts, FASEB J., 2008, vol. 22, p. 3980. https://doi.org/10.1096/fj.08-111070

    Article  CAS  PubMed  Google Scholar 

  28. Xue, Y., Xing, J., Wan, Y., Lv, X., Fan, L., Zhang, Y., Song, K., Wang, L., Wang, X., Deng, X., Baluška, F., Christie, J.M., and Lin, J., Arabidopsis blue light receptor phototropin 1 undergoes blue light-induced activation in membrane microdomains, Mol. Plant, 2018, vol. 11, p. 846. https://doi.org/10.1016/j.molp.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  29. Khalilova, L.A., Lobreva, O.V., Nedelyaeva, O.I., Karpichev, I.V., Balnokin, Y.V., Involvement of the membrane nanodomain protein, AtFlot1, in vesicular transport of plasma membrane H+-ATPase in Arabidopsis thaliana under salt stress, IJMS, 2023, vol. 24, p. 1251. https://doi.org/10.3390/ijms24021251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bolte, S., Talbot, C., Boutte, Y., Catrice, O., Read, N.D., and Satiat-Jeunemaitre, B., FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells, J. Microsc., 2004, vol. 214, p. 159.

    Article  CAS  PubMed  Google Scholar 

  31. Mayor, S., Parton, R.G., and Donaldson, J.G., Clathrin-independent pathways of endocytosis, Cold Spring Harb. Perspect. Biol., 2014, vol. 6, p. a016758. https://doi.org/10.1101/cshperspect.a016758

    Article  PubMed  PubMed Central  Google Scholar 

  32. Šamaj, J., Read, N.D., Volkmann, D., Menzel, D., and Baluška, F., The endocytic network in plants, Trends Cell Biol., 2005, vol. 15, p. 425. https://doi.org/10.1016/j.tcb.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  33. Lam, S.K., Tse, Y.C., Jiang, L., Oliviusson, P., Heinzerling, O., and Robinson, D.G., Plant prevacuolar compartments and endocytosis, Plant Cell Monographs, 2005, p. 37. https://doi.org/10.1007/7089_004

    Book  Google Scholar 

  34. Narasimhan, M., Gallei, M., Tan, S., Johnson, A., Verstraeten, I., Li, L., Rodriguez, L., Han, H., Himschoot, E., Wang, R., Vanneste, S., Sánchez-Simarro, J., Aniento, F., Adamowski, M., and Friml, J., Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking, Plant Physiol., 2021, vol. 186, p. 1122. https://doi.org/10.1093/plphys/kiab134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martinière, A., Fiche, J.B., Smokvarska, M., Mari, S., Alcon, C., Dumont, X., Hematy, K., Jaillais, Y., Nollmann, M., and Maurel, C., Osmotic stress activates two reactive oxygen species pathways with distinct effects on protein nanodomains and diffusion, Plant Physiol., 2019, vol. 179, p. 1581. https://doi.org/10.1104/pp.18.01065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Feraru, E. and Friml, J., PIN polar targeting, Plant Physiol., 2008, vol. 147, p. 1553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Danielsen, E.M. and Hansen, G.H., Lipid rafts in epithelial brush borders: atypical membrane microdomains with specialized functions, Biochim. Biophys. Acta Biomembr., 2003, vol. 1617, p. 1.

    Article  CAS  Google Scholar 

  38. dos Santos, S.M., Weber, C.C., Franke, C., Muller, W.E., and Eckert, G.P., Cholesterol: coupling between membrane microenvironment and ABC transporter activity, Biochem. BioPhys. Res. Commun., 2007, vol. 354, p. 216.

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Education and Science of Russian Federation through State Task no. 122042700044-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Khalilova.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any work conducted on animal or human participants.

Additional information

Translated by A. Aver’yanov

Abbreviations: CIE—clathrin-independent endocytosis; CME—clathrin-mediated endocytosis; DRM—detergent-resistant membranes; EE—early endosomes; ES—exosomes; GC—Golgi complex; MCD—methyl-β-cyclodextrin; MV—microvacuoles; NAA—1-naphthylacetic acid; PM—plasma membrane; PS—periplasmic space; TEM—transmission electron microscopy; TGN—trans-Golgi network; WT—wild type.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilova, L.A., Voronkov, A.S. The Membrane Nanodomain Flot1 Protein Participates in Formation of the Early Endosomes in the Root Cells of Arabidopsis thaliana. Russ J Plant Physiol 70, 74 (2023). https://doi.org/10.1134/S1021443723600307

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723600307

Keywords:

Navigation