Skip to main content
Log in

Overexpression of the Glutathione S-Transferase ATGSTF11 Gene Improves Growth and Abiotic Stress Tolerance of Tobacco Transgenic Plants

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Genes encoding glutathione S-transferases (GSTs) are potential targets for creating stress-tolerant plants by genetic engineering techniques. Despite the partial duplication of the functions of GST genes in the plant organism, each gene can perform a specific role in the regulation of growth under changing environmental conditions. Therefore it is important to investigate the functions of individual GST genes. The purpose of our study was to assess the role of the AtGSTF11 gene of Arabidopsis thaliana on the growth regulation and stress tolerance of transgenic plants. We have identified that the expression of the AtGSTF11 gene in A. thaliana is induced by salinity and drought. Constitutive expression of the AtGSTF11 gene in transgenic Nicotiana tabacum plants contributed to the improvement of root growth under salinity and cold treatment. Under normal and drought stress conditions overexpression of the AtGSTF11 promoted the shoot growth of tobacco. In the transgenic plants, drought stress also induced an increase of proline content and activity of superoxide dismutase and catalase, which are biochemical markers of stress tolerance. We discussed that the AtGSTF11 gene is a potential target for direct changes in the productivity and abiotic stress tolerance of plants by genetic engineering techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Nianiou-Obeidat, I., Madesis, P., Kissoudis, C., Voulgari, G., Chronopoulou, E., Tsaftaris, A., and Labrou, N.E., Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications, Plant Cell Rep., 2017, vol. 36, no. 6, p. 791. https://doi.org/10.1007/s00299-017-2139-7

    Article  CAS  PubMed  Google Scholar 

  2. Kalinina, E.V., Chernov, N.N., and Novichkova, M.D., Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes, Biochemistry (Moscow), 2014, vol. 79, no. 13, p. 1562. https://doi.org/10.1134/S0006297914130082

    Article  CAS  PubMed  Google Scholar 

  3. Salinas, A.E. and Wong, M.G., Glutathione S-transferases, Curr. Med. Chem., 1999, vol. 6, p. 279.

    Article  CAS  PubMed  Google Scholar 

  4. Islam, S, Rahman, I.A, Islam, T., and Ghosh, A., Genome-wide identification and expression analysis of glutathione S-transferase gene family in tomato: Gaining an insight to their physiological and stress-specific roles, PLoS One, 2017, vol. 2, p. e0187504. https://doi.org/10.1371/journal.pone.0187504

    Article  CAS  Google Scholar 

  5. Sharma, R., Sahoo, A., Devendran, R., and Jain, M., Over-expression of a rice tau class glutathione S-transferases gene improves tolerance to salinity and oxidative stresses in Arabidopsis, PLoS One, 2014, vol. 9, p. e92900. https://doi.org/10.1371/journal.pone.0092900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takesawa, T., Ito, M., Kanazaki, H., Kameya, N., and Nakamuro, I., Over-expression of ζ glutathione S-transferase in transgenic rice enhances germination and growth at low temperature, Mol. Breed, 2002, vol. 9, p. 93. https://doi.org/10.1023/A:1026718308155

    Article  CAS  Google Scholar 

  7. Roxas, V.P., Smith, R.K., Allen, E.R., and Allen, R.D., Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress, Nat. Biotechnol., 1997, vol. 15, p. 988. https://doi.org/10.1038/nbt1097-988

    Article  CAS  PubMed  Google Scholar 

  8. Fragoulaki, M.N., Axarli, I.A., Labrou, N.E., and Clonis, Y.D., Recombinant glutathione S-transferase for the determination of the herbicide alachlor: The foundations of an optical biosensor, 1st UK-US Conference on Chemical and Biological Sensors and Detectors, London, 2007.

  9. Zhao, F.Y., Liu, T., and Xu, Z.J., Modified responses of root growth and reactive oxygen species-scavenging system to combined salt and heat stress in transgenic rice, Russ. J. Plant Physiol., 2010, vol. 57, p. 518. https://doi.org/10.1134/S1021443710040096

    Article  CAS  Google Scholar 

  10. Liu, L., Liu, Y., Rao, J., Wang, G., Li, H., Ge, F., and Chen C., Overexpression of the glutathione S-transferase gene from Pyrus pyrifolia fruit improves tolerance to abiotic stress in transgenic tobacco plants, Mol. Biol., 2013, vol. 47, p. 515. https://doi.org/10.1134/S0026893313040109

    Article  CAS  Google Scholar 

  11. Dong, Y., Li, C., Zhang, Y., He, Q., Daud, M.K., Chen, J., and Zhu, S., Glutathione S-transferase gene family in Gossypium raimondii and G. arboreum: Comparative genomic study and their expression under salt stress, Front. Plant Sci., 2016, vol. 7, p. 139. https://doi.org/10.3389/fpls.2016.00139

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen, J.H., Jiang, H.W., Hsieh, E.J., Chen, H.Y., Chien, C.T., Hsieh, H.L., and Lin, T.P., Drought and salt stress tolerance of an Arabidopsis glutathione S‑transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid, Plant Physiol., 2012, vol. 158, no. 1, p. 340. https://doi.org/10.1104/pp.111.181875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Musin, Kh.G., Fedyaev, V.V., and Kuluev, B.R., State of antioxidant system and long-term storage of tobacco hairy roots with constitutive expression of glutathione-S-transferase gene AtGSTF11, Russ. J. Plant Physiol., 2021, vol. 68, p. 641. https://doi.org/10.1134/S1021443721040105

    Article  CAS  Google Scholar 

  14. Mikhaylova, E., Khusnutdinov, E., Shein, M.Y., Alekseev, V.Y., Nikonorov, Y., and Kuluev, B., The role of the GSTF11 gene in resistance to powdery mildew infection and cold stress, Plants, 2021, vol. 10, p. 2729. https://doi.org/10.3390/plants10122729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuluev, B, Mikhaylova, E., Ermoshin, A., Veselova, S., Tugbaeva, A., Gumerova, G., Gainullina, K., and Zaikina, E., The ARGOS-LIKE genes of Arabidopsis and tobacco as targets for improving plant productivity and stress tolerance, J. Plant Physiol., 2019, vol. 242, p. 153033. https://doi.org/10.1016/j.jplph.2019.153033

    Article  CAS  PubMed  Google Scholar 

  16. Xin, X.F., Nomura, K., Underwood, W., and He, S.Y., Induction and suppression of PEN3 focal accumulation during Pseudomonas syringae pv. tomato DC3000 infection of Arabidopsis, Mol. Plant Microbe Interact., 2013, vol. 26, no. 8, p. 861. https://doi.org/10.1094/MPMI-11-12-0262-R

    Article  CAS  PubMed  Google Scholar 

  17. Kuluev, B.R., Avalbaev, A.M., Mikhaylova, E.V., Nikonorov, Y.M., Berezhneva, Z.A., and Chemeris, A.V., Expression profiles and hormonal regulation of tobacco expansin genes and their involvement in abiotic stress response, J. Plant Physiol., 2016, vol. 206, p. 1. https://doi.org/10.1016/j.jplph.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  18. Kuluev, B.R., Mikhaylova, E.V., Berezhneva, Z.A., Nikonorov, Y.M., Postrigan, B.N., Kudoyarova, G.R., and Chemeris, A.V., Expression profiles and hormonal regulation of tobacco NtEXGT gene and its involvement in abiotic stress response, Plant Physiol. Biochem., 2017, vol. 111, p. 203. https://doi.org/10.1016/j.plaphy.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt, G.W. and Delaney, S.K., Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress, Mol. Genet. Genomics, 2010, vol. 283, p. 233. https://doi.org/10.1007/s00438-010-0511-1

    Article  CAS  PubMed  Google Scholar 

  20. Beauchamp, C. and Fridovich, L., Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 1971, vol. 44, p. 276.

    Article  CAS  PubMed  Google Scholar 

  21. Goth, L., A simple method for determination of serum catalase activity and revision of reference range, Clin. Chim. Acta, 1991, vol. 196, nos. 2–3, p. 143.

    Article  CAS  PubMed  Google Scholar 

  22. Bates, L.S., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, p. 205.

    Article  CAS  Google Scholar 

  23. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, p. 248.

    Article  CAS  PubMed  Google Scholar 

  24. Kolupaev, Yu.E., Plant cell antioxidants and their role in ROS signaling and plant resistance, Usp. Sovrem. Biol., 2016, vol. 136, p. 181.

    Google Scholar 

  25. Abdul Kayum, M., Nath, U.K., Park, J.I., Biswas, M.K., Choi, E.K., Song, J.Y., Kim, H.T., and Nou, I.S., Genome-wide identification, characterization, and expression profiling of glutathione S-transferase (GST) family in pumpkin reveals likely role in cold-stress tolerance, Genes (Basel), 2018, vol. 9, no. 2, p. E84. https://doi.org/10.3390/genes9020084

    Article  CAS  Google Scholar 

  26. Xu, J., Xing, X.J., Tian, Y.S., Peng, R.H., Xue, Y., Zhao, W., and Yao, Q.-H., Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress, PLoS One, 2015, vol. 10, no. 9, p. e0136960. https://doi.org/10.1371/journal.pone.0136960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vijayakumar, H., Thamilarasan, S.K., Shanmugam, A., Natarajan, S., Jung, H.J., Park, J.I., Kim, H., Chung, M.Y., and Nou, I.S., Glutathione transferases superfamily: cold-inducible expression of distinct GST genes in Brassica oleracea, Int. J. Mol. Sci., 2016, vol. 17, no. 8, p. E1211. https://doi.org/10.3390/ijms17081211

    Article  CAS  Google Scholar 

  28. Dubey, S., Misra, P., Dwivedi, S., Chatterjee, S., Bag, S.K., Mantri, S., Asif, M.H., Rai, A., Kumar, S., Shri, M., Tripathi, P., Tripathi, R.D., Trivedi, P.K., Chakrabarty, D., and Tuli, R., Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress, BMC Genomics, 2010, vol. 11, p. 648. https://doi.org/10.1186/1471-2164-11-648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gong, H., Jiao, Y., Hu, W.W., and Pua, E.C., Expression of glutathione-S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro, Plant Mol. Biol., 2005, vol. 57, no. 1, p. 53. https://doi.org/10.1007/s11103-004-4516-1

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work supported by state assignment (project no. 122030200143-8) and grant of the President of the Russian Federation (project no. MD-2304.2020.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Kuluev.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuluev, B.R., Ermoshin, A.A. & Mikhaylova, E.V. Overexpression of the Glutathione S-Transferase ATGSTF11 Gene Improves Growth and Abiotic Stress Tolerance of Tobacco Transgenic Plants. Russ J Plant Physiol 69, 148 (2022). https://doi.org/10.1134/S1021443722601653

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722601653

Keywords:

Navigation