Skip to main content
Log in

Influence of Mitochondrial Electron Transport Chain Inhibitors on Respiration and Gene Expression of Respiratory Components in a Greening Wheat Leaf

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effect of inhibitors of alternative oxidase and mitochondrial ETC complexes I and III on respiration and gene expression of components of cytochtome and nonphosphorylating pathways, and adenine nucleotide translocase was studied in the leaves of spring wheat (Triticum aestivum L., cultivar Irgina) during greening. The effects of inhibitors were most pronounced at the early stage of greening (1–6 h). During this period, a decrease in the Fv/Fm value and a decrease in respiratory activity in comparison with the control variant were found. This fact indicated the sensitivity of developing chloroplasts to disruption of mitochondrial functions. Inhibitors had a multidirectional effect on the ratio of respiratory pathways and the expression of “respiratory” genes. The use of salicylhydroxamic acid, an alternative oxidase inhibitor, activated the cytochrome pathway, whose contribution increased to 75% of total respiration, and increased the relative expression of the genes encoding the subunits of complexes I, III, IV, and ATP synthase of mitochondrial ETC, especially in the first 6 h of greening. On the contrary, antimycin and rotenone, inhibitors of complex I and III, respectively, reduced the maximum activity and the relative content of transcripts of the genes for the main pathway subunits. At the same time, inhibition of the cytochrome pathway activated the alternative respiratory pathway (which accounted for 75% of the total O2 uptake) and caused an increase in the content of transcripts of the alternative oxidase genes and components of other nonphosphorylating pathways. An increase in the relative level of ANT1 mRNA under the action of all inhibitors seems to be aimed at enhancing the transfer of ADP/ATP under conditions of energy deficiency with limited activity of the cytochrome pathway. The results indicate the coordinated nature of the functioning of the ETC components during the formation of the photosynthetic function of the leaf and confirm the idea on the important role of the redox state of the ETC in the regulation of the expression of “respiratory” genes and the functional state of chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Van Aken, O., Mitochondrial redox systems as central hubs in plant metabolism and signaling, Plant Physiol., 2021, vol. 186, p. 36.https://doi.org/10.1093/plphys/kiab101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schwarzlӓnder, M., König, A.C., Sweetlove, L.J., and Finkemeier, I., The impact of impaired mitochondrial function on retrograde signalling: a meta-analysis of transcriptomic responses, J. Exp. Bot., 2012, vol. 63, p. 1735. https://doi.org/10.1093/jxb/err374

    Article  CAS  Google Scholar 

  3. Nunes-Nesi, A., Araújo, W.L., and Fernie, A.R., Targeting mitochondrial metabolism and machinery as a means to enhance photosynthesis, Plant Physiol., 2011, vol. 155, p. 101. https://doi.org/10.1104/pp.110.163816

    Article  CAS  PubMed  Google Scholar 

  4. Garmash, E.V., Signal pathways for regulation of plant alternative oxidase genes’ expression, Russ. J. Plant Physiol., 2022, vol. 69, p. 3.https://doi.org/10.1134/S1021443722010058

    Article  Google Scholar 

  5. Garmash, E.V., Mitochondrial respiration of the photosynthesizing cell, Russ. J. Plant Physiol., 2016, vol. 63, p. 13. https://doi.org/10.1134/S1021443715060072

    Article  CAS  Google Scholar 

  6. Vanlerberghe, G.C., Dahal, K., Alber, N.A., and Chadee, A., Photosynthesis, respiration and growth: A carbon and energy balancing act for alternative oxidase, Mitochondrion, 2020, vol. 52, p. 197. https://doi.org/10.1016/j.mito.2020.04.001

    Article  CAS  PubMed  Google Scholar 

  7. Dinakar, C., Raghavendra, A.S., and Padmasree, K., Importance of AOX pathway in optimizing photosynthesis under high light stress: Role of pyruvate and malate in activating of AOX, Physiol. Plant., 2010, vol. 139, p. 13. https://doi.org/10.1111/j.1399-3054.2010.01346.x

    Article  CAS  PubMed  Google Scholar 

  8. Rasmusson, A.J., Geisler, D.A., and Møller, I.M., The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria, Mitochondrion, 2008, vol. 8, p. 47. https://doi.org/10.1016/j.mito.2007.10.004

    Article  CAS  PubMed  Google Scholar 

  9. Sweetlove, L.J., Lytovchenko, A., Morgan, M., Nunes-Nesi, A., Taylor, N.L., Baxter, C.J., Eickmeier, I., and Fernie, A.R., Mitochondrial uncoupling protein is required for efficient photosynthesis, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, p. 19587. https://doi.org/10.1073/pnas.0607751103

  10. Rasmusson, A.G. and Escobar, M., Light and diurnal regulation of plant respiratory gene expression, Physiol. Plant., 2007, vol. 129, p. 57. https://doi.org/10.1111/j.1399-3054.2006.00797.x

    Article  CAS  Google Scholar 

  11. Giraud, E., Ho, L.H.M., Clifton, R., Carroll, A., Estavillo, G., Tan, Y.F., Howell, K.A., Ivanova, A., Pogson, B.J., Millar, A.H., and Whelan, J., The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress, Plant Physiol., 2008, vol. 147, p. 595. https://doi.org/10.1104/pp.107.115121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Juszczuk, I.M., Szal, B., and Rychter, A.M., Oxidation-reduction and reactive oxygen species homeostasis in mutant plants with respiratory chain complex I dysfunction, Plant Cell Environ., 2012, vol. 35, p. 296. https://doi.org/10.1111/j.1365-3040.2011.02314.x

    Article  CAS  PubMed  Google Scholar 

  13. Alber, N.A., Sivanesan, H., and Vanlerberghe, G.C., The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain, Plant Cell Environ., 2017, vol. 40, p. 1074. https://doi.org/10.1111/pce.12884

    Article  CAS  PubMed  Google Scholar 

  14. Alber, N.A. and Vanlerberghe, G.C., Signaling interactions between mitochondria and chloroplasts in Nicotiana tabacum leaf, Physiol. Plant., 2019, vol. 167, p. 188. https://doi.org/10.1111/ppl.12879

    Article  CAS  PubMed  Google Scholar 

  15. Ramírez-Aguilar, S.J., Keuthe, M., Rocha, M., Fedyaev, V., Kramp, K., Gupta, K.J., Rasmusson, A.G., Schulze, W.X., and van Dongen, J.T., The composition of plant mitochondrial supercomplexes changes with oxygen availability, J. Biol. Chem., 2011, vol. 286, p. 43045.https://doi.org/10.1074/jbc.M111.252544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Amirsadeghi, S., Robson, C.A., and Vanlerberghe, G.C., The role of the mitochondrion in plant responses to biotic stress, Physiol. Plant., 2007, vol. 129, p. 253. https://doi.org/10.1111/j.1399-3054.2006.00775.x

    Article  CAS  Google Scholar 

  17. Zancani, M., Braidot, E., Filippi, A., and Lippe, G., Structural and functional properties of plant mitochondrial F-ATP synthase, Mitochondrion, 2020, vol. 53, p. 178. https://doi.org/10.1016/j.mito.2020.06.001

    Article  CAS  PubMed  Google Scholar 

  18. Grabelnych, O.I., Borovik, O.A., Tauson, E.L., Pobezhimova, T.P., Katyshev, A.I., Pavlovskaya, N.S., Koroleva, N.A., Lyubushkina, I.V., Bashmakov, V.Yu., Popov, V.N., Borovskii, G.B., Voinikov, V.K., Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings, Biochemistry, 2014, vol. 79, p. 506. https://doi.org/10.1134/S0006297914060030

    Article  CAS  PubMed  Google Scholar 

  19. Gazizova, N., Rakhmatullina, D., and Minibayeva, F., Effect of respiratory inhibitors on mitochondrial complexes and ADP/ATP translocators in the Triticum aestivum roots, Plant Physiol. Biochem., 2020, vol. 151, p. 601. https://doi.org/10.1016/j.plaphy.2020.04.014

    Article  CAS  PubMed  Google Scholar 

  20. Escobar, M.A., Franklin, K.A., Svensson, Å.S., Salter, M.G., Whitelam, G.C., and Rasmusson, A.G., Light regulation of the Arabidopsis respiratory chain: multiple discrete photoreceptor responses contribute to induction of type II NAD(P)H dehydrogenase genes, Plant Physiol., 2004, vol. 136, p. 2710.https://doi.org/10.1104/pp.104.046698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, D.-W., Yuan, S., Xu, F., Zhu, F., Yuan, M., Ye, H.-X., Guo, H.-Q., Lv, X., Yin, Y., and Lin, H.-H., Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in Arabidopsis, Plant Cell Environ., 2016, vol. 39, p. 12. https://doi.org/10.1111/pce.12438

    Article  CAS  PubMed  Google Scholar 

  22. Kusnetsov, V.V., Doroshenko, A.S., Kudryakova, N.V., and Danilova, M.N., Role of phytohormones and light in de-etiolation, Russ. J. Plant Physiol., 2020, vol. 67, p. 971. https://doi.org/10.1134/S1021443720060102

    Article  CAS  Google Scholar 

  23. Garmash, E.V., Grabelhych, O.I., Velegzhaninov, I.O., Borovik, O.A., Dalke, I.V., Voinikov, V.K., and Golovko, T.K., Light regulation of AOX pathway during greening of etiolated wheat seedlings, J. Plant Physiol., 2015, vol. 174, p. 75. https://doi.org/10.1016/j.jplph.2014.09.016

    Article  CAS  PubMed  Google Scholar 

  24. Garmash, E.V., Velegzhaninov, I.O., Grabelhych, O.I., Borovik, O.A., Silina, E.V., Voinikov, V.K., and Golovko, T.K., Expression profiles of genes for mitochondrial respiratory energy-dissipating systems and antioxidant enzymes in wheat leaves during de-etiolation, J. Plant Physiol., 2017, vol. 215, p. 110. https://doi.org/10.1016/j.jplph.2017.05.023

    Article  CAS  PubMed  Google Scholar 

  25. Paolacci, A.R., Tanzarella, O.A., Porceddu, E., and Ciaffi, M., Identification and validation ofreference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol., 2009, vol. 10, p. 11. https://doi.org/10.1186/1471-2199-10-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, p. 248.

    Article  CAS  PubMed  Google Scholar 

  27. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acids peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, p. 189.

    Article  CAS  PubMed  Google Scholar 

  28. Garmash, E., Khristin, M., Dymova, O., and Golovko, T., Chloroplasts chlorophyll-protein complexes and chlorophyll fluorescence in wheat seedling during greening, in: Golovko, T., Gruszeski, W., Prasad, M.N.V., and Strzałka, K., Eds., Photosynthetic Pigments—Chemical Structure, Biological Function and Ecology, Syktyvkar, Russia: Komi Scientific Centre of the Ural Branch RAS, 2014, p. 123.

    Google Scholar 

  29. Feng, H.-Q., Tang, S.-Z., Sun, K., Jia, L.-Y., and Wang, R.-F., Cyanide-resistant respiratory pathway is involved in the high-light systemic acquired acclimation of kidney bean (Phaseolus vulgaris), Photosynthetica, 2015, vol. 53, p. 195. https://doi.org/10.1007/s11099-015-0099-0

    Article  CAS  Google Scholar 

  30. Zubo, Y.O., Potapova, T.V., Yamburenko, M.V., Tarasenko, V.I. Konstantinov, Y.M., and Börner, T., Inhibition of the electron transport strongly affects transcription and transcript levels in Arabidopsis mitochondria, Mitochondrion, 2014, vol. 19, p. 222. https://doi.org/10.1016/j.mito.2014.03.011

    Article  CAS  PubMed  Google Scholar 

  31. Adamowicz-Skrzypkowska, A., Kwasniak-Owczarek, M., Van Aken, O., Kazmierczak, U., and Janska, H., Joint inhibition of mitochondrial complex IV and alternative oxidase by genetic or chemical means represses chloroplast transcription in Arabidopsis, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2020, vol. 375: 20190409. https://doi.org/10.1098/rstb.2019.0409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Florez-Sarasa, I., Flexas, J., Rasmusson, A.G., Umbach, A.L., Siedow, J.N., and Ribas-Carbo, M., In vivo cytochrome and alternative pathway respiration in leaves of Arabidopsis thaliana plants with altered alternative oxidase under different light conditions, Plant Cell Environ., 2011, vol. 34, p. 1373.

    Article  CAS  PubMed  Google Scholar 

  33. Garmash, E.V., Velegzhaninov, I.O., Ermolina, K.V., Rybak, A.V., and Malyshev, R.V., Altered levels of AOX1a expression result in changes in metabolic pathways in Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation, Plant Sci., 2020, vol. 291:110332. https://doi.org/10.1016/j.plantsci.2019.110332

    Article  CAS  PubMed  Google Scholar 

  34. Sweetlove, L.J., Heazlewood, J.L., Herald, V., Holtzapffel, R., Day, D.A., Leaver, C.J., and Millar, A.H., The impact of oxidative stress on Arabidopsis mitochondria, Plant J., 2002, vol. 32, p. 891.

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe, C.K., Hachiya, T., Takahara, K., Kawai-Yamada, M., Uchimiya, H., Uesono, Y., Terashima, I., Noguchi, K., Effects of AOX1a deficiency on plant growth, gene expression of respiratory components and metabolic profile under low-nitrogen stress in Arabidopsis thaliana, Plant Cell Physiol., 2010, vol. 51, p. 810. https://doi.org/10.1093/pcp/pcq033

    Article  CAS  PubMed  Google Scholar 

  36. Liu, Y., Yu, L.-L., Peng, Y., Geng, X.-X., and Xu, F., Alternative oxidase inhibition impairs tobacco root development and root hair formation, Front. Plant Sci., 2021, vol. 12:664792. https://doi.org/10.3389/fpls.2021.664792

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ho, L.H.M., Giraud, E., Uggalla, V., Lister, R., Clifton, R., Glen, A., Thirkettle-Watts, D., Aken, O.V., and Whelan, J., Identification of regulatory pathways controlling gene expression of stress-responsive mitochondrial proteins in Arabidopsis, Plant Physiol., 2008, vol. 147, p. 1858. https://doi.org/10.1104/pp.108.121384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yoshida, K. and Noguchi, K., Differential gene expression profiles of the mitochondrial respiratory components in illuminated Arabidopsis leaves, Plant Cell Physiol., 2009, vol. 50, p. 1449. https://doi.org/10.1093/pcp/pcp090

    Article  CAS  PubMed  Google Scholar 

  39. Yu, J., Nickels, R., and McIntosh, L., A genome approach to mitochondrial-nuclear communication in Arabidopsis, Plant Physiol. Biochem. Plant Genomics, 2001, vol. 39, p. 345. https://doi.org/10.1016/S0981-9428(01)01254-2

    Article  CAS  Google Scholar 

  40. Prado, C., Rosa, M., Pagano, E., and Prado, F., Metabolic interconnectivity among alternative respiration, residual respiration, carbohydrates and phenolics in leaves of Salvinia minima exposed to Cr(VI), Environ. Exp. Bot., 2013, vol. 87, p. 32. https://doi.org/10.1016/j.envexpbot.2012.10.005

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

RT-PCR was performed using the equipment of the Center for Collective Use Molecular Biology, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences.

Funding

The work was carried out within the theme of the State Budget R&D “Photosynthesis, Respiration, and Bioenergetics of Plants and Phototrophic Organisms (Physiological-Biochemical, Molecular-Genetic, and Ecological Aspects)” (no. 122040600021-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Garmash.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving humans and animals as research subjects.

Additional information

Translated by M. Shulskaya

Abbreviations: AOX—alternative oxidase; АP—alternative respiratory pathway; MRR—mitochondrial retrograde regulation; NAD(P)·H-DHs—rotenone-insensitive NAD(P)·H dehydrogenases; NPP—nonphosphorylating pathways; PA—photosynthetic apparatus; CRP—cytochrome respiratory pathway; CET—cyclic electron transport; ANT—adenine nucleotide translocase; PTP—permeability transition pore; UCP—uncoupling proteins; VDAC—voltage-dependent anion channel; Valt, Vcyt, Vres—capasity of alternative, cytochrome and residual respiration respectively; Vt—general respiratory activity.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garmash, E.V., Shelyakin, M.A., Belykh, E.S. et al. Influence of Mitochondrial Electron Transport Chain Inhibitors on Respiration and Gene Expression of Respiratory Components in a Greening Wheat Leaf. Russ J Plant Physiol 69, 111 (2022). https://doi.org/10.1134/S1021443722060061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722060061

Keywords:

Navigation