Skip to main content
Log in

Nickel Tolerance and Accumulation Capacities in Different Populations of the Hyperaccumulator Noccaea caerulescens

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

A comparative analysis of nickel (Ni) accumulation by the hyperaccumulator Noccaea japonica (H. Boissieu) F.K. Mey originating from ultramafic (serpentine) soil and plants from 16 populations of the hyperaccumulator Noccaea caerulescens F.K. Mey originating from ultramafic (serpentine), calamine and non-metalliferous soils, was performed. The plants were grown for 2 weeks in half-strength Hoagland’s solution without Ni, followed by a 6-week exposure to NiSO4 at a non-toxic concentration (1 μM). The Ni concentration in the roots and shoots was determined by atomic absorption spectrophotometry. In N. japonica, the Ni concentration in the shoots was significantly lower than in the roots, and lower than that in the shoots of N. caerulescens from the ultramafic populations. The ability of plants from different populations of N. caerulescens to accumulate Ni in roots (per unit dry weight) decreased in the following order: Puente Basadre ≈ Le Coulet > St-Baudille ≈ Cira ≈ Prémanon > Viviez ≈ Monte Prinzera > Les Avinières > Moravskoslezké > Le Bleymard ≈ Krušné Hory ≈ Wilwerwiltz ≈ La Calamine ≈ St-Félix-de-Palliéres ≈ Kuopio > Prayon. The value of the translocation factor in N. japonica did not significantly differ from that in the ultramafic population Puente Basadre of N. caerulescens, whereas it varied within wide limits among the N. caerulescens populations. The highest Ni translocation factor was obtained for the population Monte Prinzera from the ultramafic group and the populations Krušné Hory and Kuopio from the non-metallicolous group, whereas the lowest values were obtained for the calamine populations La Calamine and Prayon. In N. caerulescens, the Ni concentration in the roots was uncorrelated with the Ni concentration in the shoots, but significantly positively correlated with Ni tolerance. The high Ni tolerance in ultramafic populations is apparently explained by a high capacity to sequester Ni in the roots themselves, and not directly related to the root-to-shoot translocation capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Jaffré, T., Pillon, Y., Thomine, S., and Merlot, S., The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants, Front. Plant Sci., 2013, vol. 4, art. ID 279. https://doi.org/10.3389/fpls.2013.00279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van der Ent, A., Vinya, R., Erskine, P.D., Malaisse, F., Przybyłowicz, W.J., Barnabas, A.D., Harris, H.H., and Mesjasz-Przybyłowicz, J., Elemental distribution and chemical speciation of copper and cobalt in three metallophytes from the copper–cobalt belt in Northern Zambia, Metallomics, 2020, vol. 12, p. 682. https://doi.org/10.1039/c9mt00263d

    Article  CAS  PubMed  Google Scholar 

  3. Reeves, R.D., Baker, A.J., Jaffré, T., Erskine, P.D., Echevarria, G., and van der Ent, A., A global database for plants that hyperaccumulate metal and metalloid trace elements, New Phytol., 2018, vol. 218, p. 407. https://doi.org/10.1111/nph.14907

    Article  PubMed  Google Scholar 

  4. Pollard, A.J., Powell, K.D., Harper, F.A., and Smith, J.A.C., The genetic basis of metal hyperaccumulation in plants, Crit. Rev. Plant. Sci., 2002, vol. 21, p. 539. https://doi.org/10.1080/0735-260291044359

    Article  CAS  Google Scholar 

  5. Pollard, A.J., Reeves, R.D., and Baker, A.J.M., Facultative hyperaccumulation of heavy metals and metalloids, Plant Sci., 2014, vol. 217, p. 8. https://doi.org/10.1016/j.plantsci.2013.11.011

    Article  CAS  PubMed  Google Scholar 

  6. Assunção, A.G., Bookum, W.M., Nelissen, H.J., Vooijs, R., Schat, H., and Ernst, W.H., Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types, New Phytol., 2003, vol. 159, p. 411. https://doi.org/10.1046/j.1469-8137.2003.00819.x

    Article  CAS  PubMed  Google Scholar 

  7. Assunção, A.G.L., Bleeker, P., Ten Bookum, W.M., Vooijs, R., and Schat, H., Intraspecific variation of metal preference patterns for hyperaccumulation in Thlaspi caerulescens: evidence from binary exposures, Plant Soil, 2008, vol. 303, p. 289. https://doi.org/10.1007/s11104-007-9508-x

    Article  CAS  Google Scholar 

  8. Richau, K.H., Kozhevnikova, A.D., Seregin, I.V., Vooijs, R., Koevoets, P.L., Smith, J.A., Ivanov, V.B., and Schat, H., Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens, New Phytol., 2009, vol. 183, p. 106. https://doi.org/10.1111/j.1469-8137.2009.02826.x

    Article  CAS  PubMed  Google Scholar 

  9. Gonneau, C., Genevois, N., Frérot, H., Sirguey, C., and Sterckeman, T., Variation of trace metal accumulation, major nutrient uptake and growth parameters and their correlations in 22 populations of Noccaea caerulescens, Plant Soil, 2014, vol. 384, p. 271. https://doi.org/10.1007/s11104-014-2208-4

    Article  CAS  Google Scholar 

  10. Seregin, I.V., Erlikh, N.T., and Kozhevnikova, A.D., Nickel and zinc accumulation capacities and tolerance to these metals in the excluder Thlaspi arvense and the hyperaccumulator Noccaea caerulescens, Russ. J. Plant Physiol., 2014, vol. 61, p. 204. https://doi.org/10.1134/S1021443714020137

    Article  CAS  Google Scholar 

  11. Seregin, I.V., Kozhevnikova, A.D., Zhukovskaya, N.V., and Schat, H., Cadmium tolerance and accumulation in excluder Thlaspi arvense and various accessions of hyperaccumulator Noccaea caerulescens, Russ. J. Plant Physiol., 2015, vol. 62, p. 837. https://doi.org/10.1134/S1021443715050131

    Article  CAS  Google Scholar 

  12. Kozhevnikova, A.D., Seregin, I.V., and Schat, H., Accumulation of nickel by excluder Thlaspi arvense and hyperaccumulator Noccaea caerulescens upon short-term and long-term exposure, Russ. J. Plant Physiol., 2020, vol. 67, p. 303. https://doi.org/10.1134/S1021443720020089

    Article  CAS  Google Scholar 

  13. Kozhevnikova, A.D., Seregin, I.V., Aarts, M.G., and Schat, H., Intra-specific variation in zinc, cadmium and nickel hypertolerance and hyperaccumulation capacities in Noccaea caerulescens, Plant Soil, 2020, vol. 452, p. 479. https://doi.org/10.1007/s11104-020-04572-7

    Article  CAS  Google Scholar 

  14. Seregin, I.V., Kozhevnikova, A.D., and Schat, H., Correlated variation of the Zn accumulation and tolerance capacities among populations and ecotypes of the Zn hyperaccumulator, Noccaea caerulescens, Russ. J. Plant Physiol., 2021, vol. 68, p. S26. https://doi.org/10.1134/S1021443721070128

    Article  CAS  Google Scholar 

  15. Sterckeman, T., Cazes, Y., Gonneau, C., and Sirguey, C., Phenotyping 60 populations of Noccaea caerulescens provides a broader knowledge of variation in traits of interest for phytoextraction, Plant Soil, 2017, vol. 418, p. 523. https://doi.org/10.1007/s11104-017-3311-0

    Article  CAS  Google Scholar 

  16. Mizuno, T., Usui, K., Horie, K., Nosaka, S., Mizuno, N., and Obata, H., Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities, Plant Physiol. Biochem., 2005, vol. 43, p. 793. https://doi.org/10.1016/j.plaphy.2005.07.006

    Article  CAS  PubMed  Google Scholar 

  17. Reeves, R.D., Schwartz, C., Morel, J.L., and Edmondson, J., Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France, Int. J. Phytorem., 2001, vol. 3, p. 145. https://doi.org/10.1080/15226510108500054

    Article  CAS  Google Scholar 

  18. Hanikenne, M. and Nouet, C., Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics, Curr. Opin. Plant Biol., 2011, vol. 14, p. 252. https://doi.org/10.1016/j.pbi.2011.04.003

    Article  CAS  PubMed  Google Scholar 

  19. Stein, R.J., Höreth, S., de Melo, J.R., Syllwasschy, L., Lee, G., Garbin, M.L., Clemens, S., and Krämer, U., Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri, New Phytol., 2017, vol. 213, p. 1274. https://doi.org/10.1111/nph.14219

    Article  CAS  PubMed  Google Scholar 

  20. Frérot, H., Lefèbvre, C., Petit, C., Collin, C., Dos Santos, A., and Escarré, J., Zinc tolerance and hyperaccumulation in F1 and F2 offspring from intra and interecotype crosses of Thlaspi caerulescens, New Phytol., 2005, vol. 165, p. 111. https://doi.org/10.1111/j.1469-8137.2004.01227.x

    Article  CAS  PubMed  Google Scholar 

  21. Macnair, M.R., Bert, V., Huitson, S.B., Saumitou-Laprade, P., and Petit, D., Zinc tolerance and hyperaccumulation are genetically independent characters, Proc. R. Soc. B, 1999, vol. 266, p. 2175. https://doi.org/10.1098/rspb.1999.0905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bert, V., Meerts, P., Saumitou-Laprade, P., Salis, P., Gruber, W., and Verbruggen, N., Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri, Plant Soil, 2003, vol. 249, p. 9. https://doi.org/10.1023/A:1022580325301

    Article  CAS  Google Scholar 

  23. Hanikenne, M., Talke, I.N., Haydon, M.J., Lanz, C., Nolte, A., Motte, P., Kroymann, J., Weigel, D., and Krämer, U., Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4, Nature, 2008, vol. 453, p. 391. https://doi.org/10.1038/nature06877

    Article  CAS  PubMed  Google Scholar 

  24. Verbruggen, N., Hermans, C., and Schat, H., Molecular mechanisms of metal hyperaccumulation in plants, New Phytol., 2009, vol. 181, p. 759. https://doi.org/10.1111/j.1469-8137.2008.02748.x

    Article  CAS  PubMed  Google Scholar 

  25. Escarré, J., Lefèbvre, C., Gruber, W., Leblanc, M., Lepart, J., Rivière, Y., and Delay, B., Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation, New Phytol., 2000, vol. 145, p. 429. https://doi.org/10.1046/j.1469-8137.2000.00599.x

    Article  PubMed  Google Scholar 

  26. Seregin, I.V. and Kozhevnikova, A.D., Physiological role of nickel and its toxic effects on higher plant, Russ. J. Plant Physiol., 2006, vol. 53, p. 257. https://doi.org/10.1134/S1021443706020178

    Article  CAS  Google Scholar 

  27. Boyd, R.S., The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions, Plant Soil, 2007, vol. 293, p. 153. https://doi.org/10.1007/s11104-007-9240-6

    Article  CAS  Google Scholar 

  28. Boyd, R.S., Shaw, J.J., and Martens, S.N., Nickel hyperaccumulation defends Streptanthus polygaloides (Brassicaceae) against pathogens, Am. J. Bot., 1994, vol. 81, p. 294. https://doi.org/10.1002/j.1537-2197.1994.tb15446.x

    Article  CAS  Google Scholar 

  29. Kazemi-Dinan, A., Thomaschky, S., Stein, R.J., Krämer, U., and Müller, C., Zinc and cadmium hyperaccumulation act as deterrents towards specialist herbivores and impede the performance of a generalist herbivore, New Phytol., 2014, vol. 202, p. 628. https://doi.org/10.1111/nph.12663

    Article  CAS  PubMed  Google Scholar 

  30. Sharma, S.S., Schat, H., Vooijs, R., and van Heerwaarden, L.M., Combination toxicology of copper, zinc and cadmium in binary mixtures: concentration-dependent antagonistic, non-additive, and synergistic effects on root growth in Silene vulgaris, Environ. Toxicol. Chem., 1999, vol. 18, p. 348. https://doi.org/10.1002/etc.5620180235

    Article  CAS  Google Scholar 

  31. Seregin, I.V. and Kozhevnikova, A.D., Low-molecular-weight ligands in plants: role in metal homeostasis and hyperaccumulation, Photosynth. Res., 2021, vol. 150, p. 51. https://doi.org/10.1007/s11120-020-00768-1

    Article  CAS  PubMed  Google Scholar 

  32. Kozhevnikova, A.D., Seregin, I.V., and Schat, H. Translocation of Ni and Zn in Odontarrhena corsica and Noccaea caerulescens: the effects of exogenous histidine and Ni/Zn interactions, Plant Soil, 2021, vol. 468, p. 295. https://doi.org/10.1007/s11104-021-05080-y

    Article  CAS  Google Scholar 

  33. Korshunova, Y.O., Eide, D., Clark, W.G., Guerinot, M.L., and Pakrasi, H.B., The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range, Plant Mol. Biol., 1999, vol. 40, p. 37. https://doi.org/10.1023/A:1026438615520

    Article  CAS  PubMed  Google Scholar 

  34. Rogers, E.E., Eide, D.J., and Guerinot, M.L., Altered selectivity in an Arabidopsis metal transporter, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, p. 12356. https://doi.org/10.1073/pnas.210214197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Halimaa, P., Blande, D., Baltzi, E., Aarts, M.G.M., Granlund, L., Keinänen, M., Kärenlampi, S.O., Kozhevnikova, A.D., Peräniemi, S., Schat, H., Seregin, I.V., Tuomainen, M., and Tervahauta, A.L., Transcriptional effects of cadmium on iron homeostasis differ in calamine accessions of Noccaea caerulescens, Plant J., 2019, vol. 97, p. 306. https://doi.org/10.1111/tpj.14121

    Article  CAS  PubMed  Google Scholar 

  36. Nishida, S., Tsuzuki, C., Kato, A., Aisu, A., Yoshida, J., and Mizuno, T., AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana, Plant Cell Physiol., 2011, vol. 52, p. 1433. https://doi.org/10.1093/pcp/pcr089

    Article  CAS  PubMed  Google Scholar 

  37. Nishida, S., Aisu, A., and Mizuno, T., Induction of IRT1 by the nickel-induced iron-deficient response in Arabidopsis, Plant Signaling Behav., 2012, vol. 7, p. 329. https://doi.org/10.4161/psb.19263

    Article  CAS  Google Scholar 

  38. Deng, T.H.B., Tang, Y.T., Sterckeman, T., Echevarria, G., Morel, J.L., and Qiu, R.L., Effects of the interactions between nickel and other trace metals on their accumulation in the hyperaccumulator Noccaea caerulescens, Environ. Exp. Bot., 2019, vol. 158, p. 73. https://doi.org/10.1016/j.envexpbot.2018.11.015

    Article  CAS  Google Scholar 

  39. Plaza, S., Tearall, K.L., Zhao, F.J., Buchner, P., McGrath, S.P., and Hawkesford, M.J., Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens, J. Exp. Bot., 2007, vol. 58, p. 1717. https://doi.org/10.1093/jxb/erm025

    Article  CAS  PubMed  Google Scholar 

  40. Deng, T.H.B., Cloquet, C., Tang, Y.T., Sterckeman, T., Echevarria, G., Estrade, N., Morel, J.-L., and Qiu, R.L., Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants, Environ. Sci. Technol., 2014, vol. 48, p. 11926. https://doi.org/10.1021/es5020955

    Article  CAS  PubMed  Google Scholar 

  41. Dalir, N., Tandy, S., Gramlich, A., Khoshgoftarmanesh, A., and Schulin, R., Effects of nickel on zinc uptake and translocation in two wheat cultivars differing in zinc efficiency, Environ. Exp. Bot., 2017, vol. 134, p. 96. https://doi.org/10.1016/j.envexpbot.2016.11.009

    Article  CAS  Google Scholar 

  42. Craciun, A.R., Meyer, C.L., Chen, J., Roosens, N., De Groodt, R., Hilson, P., and Verbruggen, N., Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation, J. Exp. Bot., 2012, vol. 63, p. 4179. https://doi.org/10.1093/jxb/ers104

    Article  CAS  PubMed  Google Scholar 

  43. Kozhevnikova, A.D., Seregin, I.V., Erlikh, N.T., Shevyreva, T.A., Andreev, I.M., Verweij, R., and Schat, H., Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens, New Phytol., 2014, vol. 203, p. 508. https://doi.org/10.1111/nph.12816

    Article  CAS  PubMed  Google Scholar 

  44. Krämer, U., Metal hyperaccumulation in plants, Ann. Rev. Plant Biol., 2010, vol. 61, p. 517. https://doi.org/10.1146/annurev-arplant-042809-112156

    Article  CAS  Google Scholar 

  45. Seregin, I.V. and Kozhevnikova, A.D., Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium, Russ. J. Plant Physiol., 2008, vol. 55, p. 1. https://doi.org/10.1134/S1021443708010019

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank Mark Aarts, Mathilde Mousset, Thibault Sterckeman, Celestino Quintela-Sabarís, Petra Kidd, Oihana Barrutía and Sylvain Merlot for supplying the seeds of N. caerulescens, Takafumi Mizuno for the seeds of N. japonica, and Rudo Verweij, Rob Broekman, Richard van Logtestijn, Riet Vooijs, and Sandy Goette for technical assistance.

Funding

The studies carried out on Noccaea caerulescens were obtained within the Russian Science Foundation grant (project no. 21-14-00028, https://rscf.ru/project/21-14-00028/). The studies carried out on Noccaea japonica were obtained within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme no. 121040800153-1).

Author information

Authors and Affiliations

Authors

Contributions

Authors I.V. Seregin and A.D. Kozhevnikova contributed equally to the work.

Corresponding author

Correspondence to I. V. Seregin.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Additional information

Abbreviations: Ci—Cira, СМА—Col du Mas de l’Ayre, Co—Le Coulet, Du—Durfort, КН—Krušné Hory, Ku—Kuopio, LA—Les Avinières, La—Lanestosa, LB—Le Bleymard, LC—La Calamine, Le—Lellingen, MP—Monte Prinzera, MS—Moravskoslezské, PB—Puente Basadre, Pl—Plombières, Pr—Prayon, Prem—Prémanon, SB—St-Baudille, SF—St-Félix-de-Palliéres, SLM—St-Laurent-le-Minier (previously Ganges), Vi—Viviez, Wi—Wilwerwiltz (populations of the hyperaccumulator Noccaea caerulescens).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seregin, I.V., Kozhevnikova, A.D. & Schat, H. Nickel Tolerance and Accumulation Capacities in Different Populations of the Hyperaccumulator Noccaea caerulescens. Russ J Plant Physiol 69, 70 (2022). https://doi.org/10.1134/S1021443722040148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722040148

Keywords:

Navigation