Skip to main content
Log in

Accumulation of Nickel by Excluder Thlaspi arvense and Hyperaccumulator Noccaea caerulescens upon Short-Term and Long-Term Exposure

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The ability to accumulate nickel (Ni) was compared in hyperaccumulator Noccaea сaerulescens F.K. Mey and excluder Thlaspi arvense L. after a short-term (1, 2, or 3 days) and long-term (8 weeks) exposure. T. arvense and four accessions of N. сaerulescens (La Calamine (LC), Saint Félix de Palliéres (SF), Monte Prinzera (MP), and Lellingen (LE)) were grown on a half-strength Hoagland`s solution in the presence of 25 µM Ni(NO3)2 (N. сaerulescens and T. arvense) and 250 µM Ni(NO3)2 (N. сaerulescens; T. arvense for only 1–3 days). Metal content in the roots and shoots was determined by atomic absorption spectroscopy. The Ni content per unit mass in the roots and shoots of N. сaerulescens in most cases did not differ significantly after the short-term incubation. At 25 µM Ni in the nutrient solution, its content in the roots of LC plants after 2–3 days of incubation was lower than in T. arvense, whereas Ni content in the shoots of these plants was similar. In the plants of other accessions of N. сaerulescens, Ni content in the roots and shoots in most cases was higher than in T. arvense. At 250 µM Ni, the differences in metal content in the roots were insignificant, and its content in the shoots in all the accessions of the hyperaccumulator was much higher than in the excluder. The Ni translocation factor was higher in N. сaerulescens than in T. arvense and exceeded unity only in the plants of MP accession. After the long-term exposure, the Ni translocation factor was higher than 1 in plants of all accessions of N. сaerulescens and decreased in the following order: MP ≈ LC > LE ≥ SF; in T. arvense, it did not exceed 0.3. Upon both long-term and short-term exposure, the ability to accumulate Ni by N. сaerulescens plants of different accessions generally increased in the following order: LC < SF < LE < MP. However, minor changes were observed depending on the duration of exposure and Ni concentration in the medium. Thus, considerable differences in the ability to accumulate Ni among the plants of different accessions of hyperaccumulator N. сaerulescens became apparent as early as during the first days of exposure to Ni and hardly depended on the duration of incubation or metal concentration in the medium. The obtained data confirm the assumption about a constitutive or genetically predetermined ability of plants of different N. сaerulescens accessions to accumulate Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Brooks, R.R., Lee, J., Reeves, R.D., and Jaffré, T., Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants, J. Geochem. Explor., 1977, vol. 7, p. 49.

    Article  CAS  Google Scholar 

  2. Reeves, R.D. and Baker, A.J.M., Metal-accumulating plants, in Phytoremediation of Toxic Metals Using Plants to Clean Up the Environment, Raskin, I. and Ensley, B.D., Eds., New York: John Wiley and Sons, 2000, p. 193.

    Google Scholar 

  3. Verbruggen, N., Hermans, C., and Schat, H., Molecular mechanisms of metal hyperaccumulation in plants, New Phytol., 2009, vol. 181, p. 759.

    Article  CAS  Google Scholar 

  4. Krämer, U., Metal hyperaccumulation in plants, Annu. Rev. Plant Biol., 2010, vol. 61, p. 517.

  5. Hanikenne, M., Talke, I.N., Haydon, M.J., Lanz, C., Nolte, A., Motte, P., Kroymann, J., Weigel, D., and Krämer, U., Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4,Nature, 2008, vol. 453, p. 391.

    Article  CAS  Google Scholar 

  6. Sterckeman, T., Cazes, Y., Gonneau, C., and Sirguey, C., Phenotyping 60 populations of Noccaea caerulescens provides a broader knowledge of variation in traits of interest for phytoextraction, Plant Soil, 2017, vol. 418, p. 523.

    Article  CAS  Google Scholar 

  7. Lin, Y.F. and Aarts, M.G.M., The molecular mechanism of zinc and cadmium stress response in plants, Cell. Mol. Life Sci., 2012, vol. 69, p. 3187.

    Article  CAS  Google Scholar 

  8. Ernst, W.H.O., Evolution of metal hyperaccumulation and phytoremediation hype, New Phytol., 2000, vol. 146, p. 357.

    Article  Google Scholar 

  9. Assunção, A.G.L., Schat, H., and Aarts, M.G.M., Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants, New Phytol., 2003, vol. 159, p. 351.

  10. Macnair, M.R., The hyperaccumulation of metals by plants, Adv. Bot. Res., 2003, vol. 40, p. 63.

    Article  CAS  Google Scholar 

  11. Deng, T.H.B., Tang, Y.T., Sterckeman, T., Echevarria, G., Morel, J.L., and Qiu, R.L., Effects of the interactions between nickel and other trace metals on their accumulation in the hyperaccumulator Noccaea caerulescens,Environ. Exp. Bot., 2019, vol. 158, p. 73.

    Article  CAS  Google Scholar 

  12. Sinclair, S.A. and Krämer, U., The zinc homeostasis network of land plants, Biochem. Biophys. Acta, 2012, vol. 1823, p. 1553.

    Article  CAS  Google Scholar 

  13. Assunção, A.G.L., da Costa Martins, P., de Folter, S., Voojis, R., Schat, H., and Aarts, M.G.M., Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens,Plant Cell Environ., 2001, vol. 24, p. 217.

  14. Meharg, A.A., Mechanisms of plant resistance to metal and metalloid ions and potential biotechnological applic-ations, Plant Soil, 2005, vol. 274, p. 163.

    Article  CAS  Google Scholar 

  15. Richau, K.H., Kozhevnikova, A.D., Seregin, I.V., Vooijs, R., Koevoets, P.L.M., Smith, J.A.C., Ivanov, V.B., and Schat, H., Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator, Thlaspi caerulescens,New Phytol., 2009, vol. 183, p. 106.

    Article  CAS  Google Scholar 

  16. Kozhevnikova, A.D., Seregin, I.V., Erlikh, N.T., Shevyreva, T.A., Andreev, I.M., Verweij, R., and Schat, H., Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens,New Phytol., 2014, vol. 203, p. 508.

    Article  CAS  Google Scholar 

  17. Visioli, G., Gullì, M., and Marmiroli, N., Noccaea caerulescens populations adapted to grow in metalliferous and non-metalliferous soils: Ni tolerance, accumulation and expression analysis of genes involved in metal homeostasis, Environ. Exp. Bot., 2014, vol. 105, p. 10.

    Article  CAS  Google Scholar 

  18. Seregin, I.V., Erlikh, N.T., and Kozhevnikova, A.D., Nickel and zinc accumulation capacities and tolerance to these metals in the excluder Thlaspi arvense and the hyperaccumulator Noccaea caerulescens,Russ. J. Plant Physiol., 2014, vol. 61, p. 204.

    Article  CAS  Google Scholar 

  19. Seregin, I.V., Kozhevnikova, A.D., Zhukovskaya, N.V., and Schat, H., Cadmium tolerance and accumulation in excluder Thlaspi arvense and various accessions of hyperaccumulator Noccaea caerulescens,Russ. J. Plant Physiol., 2015, vol. 62, p. 837.

    Article  CAS  Google Scholar 

  20. Callahan, D.L., Baker, A.J., Kolev, S.D., and Wedd, A.G., Metal ion ligands in hyperaccumulating plants, J. Biol. Inor-g. Chem., 2006, vol. 11, p. 2.

    Article  CAS  Google Scholar 

  21. Richau, K.H. and Schat, H., Intraspecific variation of nickel and zinc accumulation and tolerance in the hyperaccumulator Thlaspi caerulescens,Plant Soil, 2009, vol. 314, p. 253.

    Article  CAS  Google Scholar 

  22. Seregin, I.V. and Kozhevnikova, A.D., Physiological role of nickel and its toxic effects on higher plants, Russ. J. Plant Physiol., 2006, vol. 53, p. 285.

    Article  Google Scholar 

  23. Leitenmaier, B. and Küpper, H., Compartmentation and complexation of metals in hyperaccumulator plants, Front. Plant Sci., 2013, vol. 4, p. 374.

    Article  Google Scholar 

  24. Deng, T.H.B., van der Ent, A., Tang, Y.T., Sterckeman, T., Echevarria, G., Morel, J.L., and Qiu, R.L., Nickel hyperaccumulation mechanisms: a review on the current state of knowledge, Plant Soil, 2018, vol. 423, p. 1.

    Article  CAS  Google Scholar 

  25. Lombi, E., Zhao, F.J., Dunham, S.J., and McGrath, S.P., Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense,New Phytol., 2000, vol. 145, p. 11.

    Article  CAS  Google Scholar 

  26. Kozhevnikova, A.D., Seregin, I.V., Gosti, F., and Schat, H., Zinc accumulation and distribution over tissues in Noccaea caerulescens in nature and in hydroponics: a comparison, Plant Soil, 2017, vol. 411, p. 5.

    Article  CAS  Google Scholar 

  27. Hussain, D., Haydon, M.J., Wang, Y., Wong, E., Sherson, S.M., Young, J., Camakaris, J., Harper, J.F., and Cobbett, C.S., P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis,Plant Cell, 2004, vol. 16, p. 1327.

    Article  CAS  Google Scholar 

  28. Bernard, C., Roosens, N., Czernic, P., Lebrun, M., and Verbruggen, N., A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens,FEBS Lett., 2004, vol. 569, p. 140.

    Article  CAS  Google Scholar 

  29. Drager, D.B., Desbrosses-Fonrouge, A.G., Krach, C., Chardonnens, A.N., Meyer, R.C., Saumitou-Laprade, P., and Krämer, U., Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels, Plant J., 2004, vol. 39, p. 425.

    Article  Google Scholar 

  30. Craciun, A.R., Meyer, C.-L., Chen, J., Roosens, N., Groodt, R.D., Hilson, P., and Verbruggen, N., Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation, J. Exp. Bot., 2012, vol. 63, p. 4179.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.B. Ivanov for critical discussion of the obtained results.

Funding

This work was partially supported by the Russian Foundation for Basic Research, project no. 19-04-00369, and the LOCOMET International Research Program.

Author information

Authors and Affiliations

Authors

Contributions

A. D. Kozhevnikova and I. V. Seregin made equal contribution to this work.

Corresponding author

Correspondence to A. D. Kozhevnikova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Additional information

Translated by N. Balakshina

Abbreviations: LC—La Calamine; LE—Lellingen; MP—Monte Prinzera; SF—Saint Félix de Palliéres; PB—Puente Basadre; Pr—Prayon; SLM—Saint Laurent le Minier (formerly Ganges) (accessions of hyperaccumulator Noccaea сaerulescens).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhevnikova, A.D., Seregin, I.V. & Schat, H. Accumulation of Nickel by Excluder Thlaspi arvense and Hyperaccumulator Noccaea caerulescens upon Short-Term and Long-Term Exposure. Russ J Plant Physiol 67, 303–311 (2020). https://doi.org/10.1134/S1021443720020089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720020089

Keywords:

Navigation