Skip to main content
Log in

Low Temperature Plasma Affects Physiological and Genetic Attributes of Foeniculum vulgare

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The present study aimed to determine the effects of low-temperature plasma (LTP) on seed germination, physiological, and genetic features of Foeniculum vulgare Mill. Fennel seeds were divided into four groups: a control group and three experimental groups. The experimental groups were exposed to LTP for 5, 10, and 20 min. Then the seeds of the experimental and control groups were grown for 21 days. Subsequently, total sugar levels, activity and expression of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) enzymes, total flavonoids, and malondialdehyde (MDA) levels in both LTP-treated seeds and the control group were examined. Results showed that the concentration of sugar in the experimental groups increased significantly in comparison with the control group. SOD activity in 5 min, CAT in 5 and 10 min, and APX in all LTP treatments increased significantly compared with the control group. In addition, the expression of genes encoding these enzymes significantly increased in all groups. LTP treatments also increased total flavonoids and significantly reduced MDA. The study concluded that priming of the fennel seeds with low-temperature plasma treatment may increase their germination and vigor and improve plants’ resistance by changing their antioxidant system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. van Wyk, B.E. and Wink, M., Medicinal Plants of the World, Wallingford: CAB Int., 2018.

    Google Scholar 

  2. Jiang, J., Lu, Y., Li, J., Li, L., He, X., and Shao, H., Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (bacterial wilt), PLoS One, 2014, vol. 9, p. 5.

    Google Scholar 

  3. Sera, B., Spatenka, P., Sery, M., Vrchotova, N., and Hruskova, I., Influence of plasma treatment on wheat and oat germination and early growth, IEEE Trans. Plasma Sci., 2010, vol. 38, p. 2963.

    Article  Google Scholar 

  4. Filatova, I., Azharonok, V., Lushkevich, V., Zhukovsky, A., Gadzhieva, G., and Spasic, K., Plasma seeds treatment as a promising technique for seed germination improvement, Proc. XXXI Int. Conf. on Phenomena in Ionized Gases, Granada, 2013.

  5. Ohta, T., Plasma in agriculture, in Cold Plasma in Food and Agriculture: Fundamentals and Applications, Misra, N.N., Schlüter, O., and Cullen, P.J., Eds., San Diego: Academic, 2016, ch. 8, p. 205.

    Google Scholar 

  6. Goyoaga, C., Burbano, C., Cuadrado, C., Romero, C., Guillamón, E., and Varela, A., Content and distribution of protein, sugars and inositol phosphates during the germination and seedling growth of two cultivars of Vicia faba, J. Food Compos. Anal., 2011, vol. 24, p. 391.

    Article  CAS  Google Scholar 

  7. Seddighinia, F.S., Iranbakhsh, A., Ardebili, Z.O., Satari, T.N., and Soleimanpour, S., Seed priming with cold plasma and multi-walled carbon nanotubes modified growth, tissue differentiation, anatomy, and yield in bitter melon (Momordi cacharantia), J. Plant Growth Regul., 2019, vol. 1, p. 12.

    Google Scholar 

  8. Mildažienė, V., Aleknavičiūtė, V., Žūkienė, R., Paužaitė, G., Naučienė, Z., and Filatova, I., Treatment of common sunflower (Helianthus annus L.) seeds with radio-frequency electromagnetic field and cold plasma induces changes in seed phytohormone balance, seedling development and leaf protein expression, Sci. Rep., 2019, vol. 9, p. 12.

    Article  Google Scholar 

  9. Pérez-Pizá, MC., Prevosto, L., Grijalba, PE., Zillim CG., Cejasm, E., Mancinelli, B., Improvement of growth and yield of soybean plants through the application of non-thermal plasmas to seeds with different health status, Heliyon, 2019, vol. 5, p. 1495.

    Article  Google Scholar 

  10. Sheteiwy, MS., An, J., Yin, M., Jia, X., Guan, Y., and He, F., Cold plasma treatment and exogenous salicylic acid priming enhances salinity tolerance of Oryza sativa seedlings, Protoplasma, 2019, vol. 256, p. 79.

    Article  CAS  Google Scholar 

  11. Iranbakhsh, A., Ardebili, Z.O., Molaei, H., Ardebili, N.O., and Amini, M., Cold plasma up-regulated expressions of WRKY1 transcription factor and genes involved in biosynthesis of cannabinoids in hemp (Cannabis sativa L.), Plasma Chem. Plasma Process., 2020, vol. 40, p. 527.

    Article  CAS  Google Scholar 

  12. Jafar, M., Farooq, M., Cheema, M., Afzal, I., Basra, S., and Wahid, M., Improving the performance of wheat by seed priming under saline conditions, J. Agron. Sci., 2012, vol. 198, p. 38.

    Article  Google Scholar 

  13. Zhao, Y., Lu, Z., and He, L., Effects of saline-alkaline stress on seed germination and seedling growth of Sorghum bicolor (L.) Moench, Appl. Biochem. Biotechnol., 2014, vol. 173, p. 1680.

    Article  CAS  Google Scholar 

  14. Randeniya, LK. and de Groot. GJ., Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: a review, Plasma Processes Polym., 2015, vol. 12, p. 608.

    Article  CAS  Google Scholar 

  15. Milivojević, M., Ripka, Z., and Petrović, T., ISTA rules changes in seed germination testing at the beginning of the 21st century, J. Process. Energy Agric., 2018, vol. 22, p. 40.

    Article  Google Scholar 

  16. Matthews, S. and Khajeh-Hosseini, M., Length of the lag period of germination and metabolic repair explain vigor differences in seed lots of maize (Zea mays), Seed Sci. Technol., 2007, vol. 35, p. 200.

    Article  Google Scholar 

  17. Maguire, J.D., Speed of germination—Aid in selection and evaluation for seedling emergence and vigor 1, Crop Sci., 1962, vol. 2, p. 176.

    Article  Google Scholar 

  18. Vashisth, A. and Nagarajanm S., Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field, J. Plant Physiol., 2010, vol. 167, p. 149.

    Article  CAS  Google Scholar 

  19. Hartmann, H.T. and Kester, D.E., Plant Propagation: Principles and Practices, Englewood Cliffs, NJ: Prentice-Hall, 1975.

    Google Scholar 

  20. Denes, F.S., Young, R.A., Manolache, S., and Volin, J.C., US Patents 6 543 460, 2003.

  21. Scroccarello, A., Della Pelle, F., Neri, L., Pittia, P., and Compagnone, D., Silver and gold nanoparticles based colorimetric assays for the determination of sugars and polyphenols in apples, Food Res. Int., 2019, vol. 119, p. 359.

    Article  CAS  Google Scholar 

  22. Elavarthi, S. and Martin, B., Spectrophotometric assays for antioxidant enzymes in plants, in Plant Stress Tolerance: Methods and Protocols, New York: Springer-Verlag, 2010, p. 273.

    Google Scholar 

  23. Pereira, G., Molina, SMG., Lea, P., and Azevedo, R.A., Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea, Plant Soil, 2002, vol. 239, p. 123.

    Article  CAS  Google Scholar 

  24. Toor, R.K. and Savage, G.P., Antioxidant activity in different fractions of tomatoes, Food Res. Int., 2005, vol. 38, p. 487.

    Article  CAS  Google Scholar 

  25. Davey, M., Stals, E., Panis, B., Keulemans, J., and Swennen, R., High-throughput determination of malondialdehyde in plant tissues, Anal. Biochem., 2005, vol. 347, p. 201.

    Article  CAS  Google Scholar 

  26. Henselová, M., Zahoranová, A., and Černák, M., Effect of low temperature plasma on the germination and ontogenetic development of corn (Zea mays L.), Proc. Conf. “Vliv Abiotických a Biotických Stresorů na Vlastnosti Rostlin,” Prague, 2011.

  27. Wu, Z., Chi, L., Bian, S., and Xu, K., Effects of plasma treatment on maize seeding resistance, J. Maize Sci., 2007, vol. 15, p. 111.

    CAS  Google Scholar 

  28. Sadhu, S., Thirumdas, R., Deshmukh, R., and Annapure, U., Influence of cold plasma on the enzymatic activity in germinating mung beans (Vigna radiate), LWT–Food Sci. Technol., 2017, vol. 78, p. 97.

    Article  CAS  Google Scholar 

  29. Singh, R., Prasad, P., Mohan, R., Verma, M.K., and Kumar, B., Radiofrequency cold plasma treatment enhances seed germination and seedling growth in variety CIM-Saumya of sweet basil (Ocimum basilicum L.), J. Appl. Res. Med. Arom. Plants, 2019, vol. 12, p. 78.

    Google Scholar 

  30. Laroussi, M., Low temperature plasma-based sterilization: overview and state-of-the-art, Plasma Process. Polym., 2005, vol. 2, p. 391.

    Article  CAS  Google Scholar 

  31. Sharma, P., Jha, A.B., Dubey, R.S., and Pessarakli, M., Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions, J. Bot., 2012, vol. 2, p. 212.

    Google Scholar 

  32. Henselová, M., Slováková, Ľ., Martinka, M., and Zahoranová, A., Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma, Biologia, 2012, vol. 67, p. 490.

    Article  Google Scholar 

  33. Kučerová, K., Henselová, M., Slováková, Ľ., and Hensel, K., Effects of plasma activated water on wheat: Germination, growth parameters, photosynthetic pigments, soluble protein content, and antioxidant enzymes activity, Plasma Process. Polym., 2019, vol. 16, p. 1800.

    Article  Google Scholar 

  34. Li, L., Li, J., Shen, M., Zhang, C., and Dong, Y., Cold plasma treatment enhances oilseed rape seed germination under drought stress, Sci. Rep., 2015, vol. 5, p. 13033.

    Article  CAS  Google Scholar 

  35. Hao, L., Wang, Y., Zhang, J., Xie, Y., Zhang, M., and Duan, L., Coronatine enhances drought tolerance via improving antioxidative capacity to maintaining higher photosynthetic performance in soybean, Plant Sci., 2013, vol. 210, p. 1.

    Article  CAS  Google Scholar 

  36. Rahman, M.M., Sajib, S.A., Rahi, M.S., Tahura, S., Roy, N.C., and Parvez, S., Mechanisms and signaling associated with LPDBD plasma mediated growth improvement in wheat, Sci. Rep., 2018, vol. 8, p. 1.

    Google Scholar 

  37. Sarangapani, C., O’Toole, G., Cullen, P., and Bourke, P., Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries, Innovative Food Sci. Emerg. Technol., 2017, vol. 44, p. 235.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors would like to thank the officials of the Islamic Azad University, Islamshahr Branch, for financing this project.

Funding

This project was supported by the Islamic Azad University, Islamshahr Branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Barzin.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

The article is published in the original.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asnavandi, A., Barzin, G., Mahabadi, T.D. et al. Low Temperature Plasma Affects Physiological and Genetic Attributes of Foeniculum vulgare. Russ J Plant Physiol 69, 33 (2022). https://doi.org/10.1134/S1021443722020029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722020029

Keywords:

Navigation