Skip to main content
Log in

Effect of Soil-Dwelling Fungi on the Seedlings of Sorghum in the Presence of Polycyclic Aromatic Hydrocarbons

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Morphometric, physiological, and biochemical characteristics were determined in the seedlings of Sorghum bicolor (L.) Moench treated with natural metabolites of soil-dwelling fungi Fusarium oxysporum (Schlecht. emend. Snyder & Hansen) and Stropharia rugosoannulata (Farlow ex Murrill), polycyclic aromatic hydrocarbons (PAHs) pyrene and fluoranthene, and the products of their fungal degradation. The obtained results showed that the effect of fungal culture liquids (CLs) on plants depended on the duration of culturing. In the case of S. rugosoannulata, the inhibitory effect intensified, while the stimulatory effect became stronger (except for germinating capacity) in the case of F. oxysporum. Fungal CLs and native PAHs augmented peroxidase activity in sorghum seedlings three to seven times as compared with control material. Duration of culturing of the fungi exerted a considerable and reverse influence on the pattern of changes in sorghum peroxidase activity in response to CLs of Stropharia and Fusarium. The presence of PAHs and the products of their fungal degradation considerably modified some parameters, especially characteristic of F. oxysporum. The effect of fluoranthene in its CL, which stimulated shoot growth and almost doubled shoot weight, with peroxidase activity decreasing more than two times, was most pronounced. Revealed differences in the effect of fungal metabolites on the seedlings of sorghum may be related to different ecological strategies of fungi and production therein of various biologically active compounds, which causes corresponding plant responses on morphological, physiological, and biochemical levels. Considerable changes in some characteristics occurring in the presence of PAHs and their derivatives point to an appreciable influence of environmental pollutants on interactions between the organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Antonissen, G., Martel, A., Pasmans, F., Ducatelle, R., Verbrugghe, E., Vandenbroucke, V., Li, S., Haesebrouck, F., van Immerseel, F., and Croubels, S., The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases, Toxins, 2014, vol. 6, pp. 430–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moretti, M., Minerdi, D., Gehrig, P., Garibaldi, A., Gullino, M.L., and Riedel, K., A bacterial–fungal metaproteomic analysis enlightens an intriguing multicomponent interaction in the rhizosphere of Lactuca sativa, J. Proteome Res., 2012, vol. 11, no. 4, pp. 2061–2077. https://doi.org/10.1021/pr201204v

    Article  CAS  PubMed  Google Scholar 

  3. Trillas, M.I. and Segarra, G., Interactions between nonpathogenic fungi and plants, Adv. Bot. Res., 2009, vol. 51, pp. 321–359. https://doi.org/10.1016/S0065-2296(09)51008-7

    Article  CAS  Google Scholar 

  4. Di, X., Takken, F.L.W., and Tintor, N., How phytohormones shape interactions between plants and the soil-borne fungus Fusarium oxysporum, Front. Plant Sci., 2016, vol. 7: 170. https://doi.org/10.3389/fpls.2016.00170

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kulkarni, G.B., Sajjan, S.S., and Karegoudar, T.B., Pathogenicity of indole-3-acetic acid producing fungus Fusarium delphinoides strain GPK towards chickpea and pigeon pea, Eur. J. Plant Pathol., 2011, vol. 131, pp. 355–369.

    Article  CAS  Google Scholar 

  6. Muromtsev, G.S., Rakovski, Yu.S., Krutova, R.L., and Pervii, E.N., Method for gibberellin extraction from the liquid culture of Fusarium moniliforme, USSR Author’s Certificate 287968, December 3, 1970, Byull. Izobret., 1970, no. 36.

  7. Lawal, A.T., Polycyclic aromatic hydrocarbons: a review, Cogent Environ. Sci., 2017, vol. 3: 1339841. https://doi.org/10.1080/23311843.2017.1339841

    Article  CAS  Google Scholar 

  8. Jacques, R.J., Okeke, B.C., Bento, F.M., Teixeira, A.S., Peralba, M.C., and Camargo, F.A., Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil, Bioresour. Technol., 2008, vol. 99, pp. 2637–2643.

    Article  CAS  PubMed  Google Scholar 

  9. Steffen, K., Schubert, S., Tuomela, M., Hatakka, A., and Hofrichter, M., Enhancement of bioconversion of high-molecular mass polycyclic aromatic hydrocarbons in contaminated non-sterile soil by litter-decomposing fungi, Biodegradation, 2007, vol. 18, pp. 359–369.

    Article  CAS  PubMed  Google Scholar 

  10. Steffen, K., Hatakka, A., and Hofrichter, M., Degradation of humic acids by the litter-decomposing basidiomycete Collybia dryophila, Appl. Environ. Microbiol., 2002, vol. 68, pp. 3442–3448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bradford, M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  12. Niku-Paavola, M., Karhunen, E., Salola, P., and Raunio, V., Ligninolytic enzymes of the white rot fungus Phlebia radiate, Biochem. J., 1988, vol. 254, pp. 877–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bezalel, L., Hadar, Y., and Cerniglia, C., Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus, Appl. Environ. Microbiol., 1997, vol. 63, pp. 2495–2501.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pozdnyakova, N., Schlosser, D., Dubrovskaya, E., Balandina, S., Sigida, E., Grinev, V., and Turkovskaya, O., The degradative activity and adaptation potential of the litter-decomposing fungus Stropharia rugosoannulata, World J. Microbiol. Biotechnol., 2018, vol. 34: 133. https://doi.org/10.1007/s11274-018-2516-6

    Article  CAS  PubMed  Google Scholar 

  15. Pozdnyakova, N., Varese, G.C., Prigione, V., Dubrovskaya, E., Balandina, S., and Turkovskaya, O., Degradative properties of two new-isolated strains of ascomycetes: Fusarium oxysporum and Lecanicilium aphanocladii, Int. Microbiol., 2018. https://doi.org/10.1007/s10123-018-0032-z

  16. Bagirova, S.F., Dzhavakhiya, V.G., D’yakov, Yu.T., Ozeretskovskaya, O.L., Provorov, N.A., Tikhonovich, I.A., and Shcherbakova, L.A., Fundamental’naya fitopatologiya (Fundamental Phytopathology), Moscow: KRASAND, 2012.

  17. Kovács, A., Vasas, A., and Hohmann, J., Natural phenanthrenes and their biological activity, Phytochemistry, 2008, vol. 69, pp. 1084–1110. https://doi.org/10.1016/j.phytochem.2007.12.005

  18. Berestetskii, O.A., Study of the phytotoxic properties of microscopic fungi, in Metody eksperimental’noi mikologii (Methods of Experimental Mycology), Kiev: Naukova Dumka, 1982, pp. 321–333.

  19. Blume, Ya.B., Krasylenko, Yu.A., and Emets, A.I., Effects of phytohormones on the cytoskeleton of the plant cell, Russ. J. Plant Physiol., 2012, vol. 59, pp. 515–529.

    Article  CAS  Google Scholar 

  20. Seta, Y., Kitamura, H., Takahashi, N., and Sumiki, Y., Chemical structure of gibberellins. Part VIII, in Biochemistry of “Bakanae” Fungus, Part 38, Bull. Agric. Chem. Soc. Jpn., 1957, vol. 21, no. 1, pp. 73–74. https://doi.org/10.1080/03758397.1957.10857360

    Article  Google Scholar 

  21. Dinolfo, M.I., Castanares, E., and Stenglein, S.A., Fusarium–plant interaction: state of the art—a review, Plant Protect. Sci., 2017, vol. 53, no. 2, pp. 61–70.

    Article  CAS  Google Scholar 

  22. Gramss, G. and Mascher, R., Mutual influence of soil basidiomycetes and white mustard plants on their enzymatic and catabolic activities, J. Basic Microbiol., 2011, vol. 51, pp. 40–51.

    Article  CAS  PubMed  Google Scholar 

  23. Geiger, J.P., Riot, B., Nandris, D., and Nicole, M., Peroxidase production in tissues of the rubber tree following infection by root rot fungi, Physiol. Mol. Plant Pathol., 1989, vol. 34, pp. 241–256.

    Article  CAS  Google Scholar 

  24. Gramss, G., The universe of basidiomycetous ground fungi, in Current Research, Technology and Education Topics in Applied Microbiology and Microbial Bi-otechnology, Méndez, A., Ed., Badajoz: Formatex Res. Center, 2010, vol. 1, pp. 218–229.

  25. Dubrovskaya, E., Pozdnyakova, N., Golubev, S., Muratova, A., Grinev, V., Bondarenkova, A., and Turkovskaya, O., Peroxidases from root exudates of Medicago sativa and Sorghum bicolor: catalytic properties and involvement in PAH degradation, Chemosphere, 2017, vol. 169, pp. 224–232.

    Article  CAS  PubMed  Google Scholar 

  26. Pozdnyakova, N.N., Rodakiewicz-Nowak, J., Turkovskaya, O.V., and Haber, J., Oxidative degradation of polyaromatic hydrocarbons catalysed by blue laccase from Pleurotus ostreatus D1 in the presence of synthetic mediators, J. Enzyme Microb. Technol., 2006, vol. 39, no. 6, pp. 1242–1249.

    Article  CAS  Google Scholar 

  27. Ghosal, D., Ghosh, S., Dutta, T., and Ahn, Y., Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review, Front. Microbiol., 2016, vol. 7: 1369.

    PubMed  PubMed Central  Google Scholar 

  28. Dubrovskaya, E.V., Pozdnyakova, N.N., Muratova, A.Yu., and Turkovskaya, O.V., Changes in phytotoxicity of polycyclic aromatic hydrocarbons in the course of microbial degradation, Russ. J. Plant Physiol., 2016, vol. 63, pp. 172–180.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dietmar Schlosser (Helmholtz-Zentrum für Umweltforschung–UFZ, Leipzig, Germany) for providing the strain of Stropharia rugosoannulata and M.P. Chernyshova and V.S. Grinev (Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences) for chromatography.

Funding

This work was done within the framework of a state assignment given to the Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (project no. АААА-А17-117102740093-3) and supported by the Russian Foundation for Basic Research, project no. 16-04-00351.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Turkovskaya.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Balakshina

Abbreviations: CL—culture liquid; PAH—polycyclic aromatic hydrocarbon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkovskaya, O.V., Dubrovskaya, E.V., Golubev, S.N. et al. Effect of Soil-Dwelling Fungi on the Seedlings of Sorghum in the Presence of Polycyclic Aromatic Hydrocarbons. Russ J Plant Physiol 66, 818–826 (2019). https://doi.org/10.1134/S1021443719040137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443719040137

Keywords:

Navigation