Skip to main content
Log in

Pathogenicity of indole-3-acetic acid producing fungus Fusarium delphinoides strain GPK towards chickpea and pigeon pea

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

An indole-3-acetic acid (IAA) producing fungal strain was isolated from chickpea grown rhizospheric soil samples. Based on morphological and Internal Transcribed Spacer (ITS) region sequence analysis the new isolate was identified as Fusarium delphinoides. The Fusarium delphinoides strain produces and secretes IAA in-vitro as identified by HPLC and Mass spectrometry. The IAA production is dependent on tryptophan (Trp) as a nitrogen source in the medium. The IAA production is influenced by growth conditions such as pH of the medium, concentration of Trp and the nature of the carbon source. Additional nitrogen sources repress Trp dependent IAA production. Glucose and Trp served as the best carbon and nitrogen sources respectively. Pathogenicity of Fusarium delphinoides towards the plants was tested by electrolyte, nutrient leakage analysis and also by scoring the disease symptoms. Two cultivars of chickpea (ICCV-10 and L-550) and two cultivars of pigeon pea (Maruti and PT-221) were assessed for the pathogenicity by inoculating with spores of Fusarium delphinoides. The inoculation induced symptoms of Fusarium wilt as in the case of Fusarium oxysporum f. sp. ciceris (FOC), a known pathogen causing Fusarium wilt in chickpea. Electrolyte and nutrient leakage from the infected plants were used to assess the resistance, tolerance (moderately resistance) and susceptibility of the plants to the infection. Based on the results, both the pigeon pea cultivars (Maruti and PT-221) were rated as resistant, and ICCV-10 was rated as a tolerant cultivar of chickpea. However, chickpea cultivar L −550 was found to be a susceptible host for infection by Fusarium delphinoides. These results suggest that Fusarium delphinoides, which belongs to the Fusarium dimerum species group, is an IAA producing plant pathogen and causes wilt in chickpea. Further, along with pathogenicity tests, electrolyte and nutrient leakage analysis can be used to assess the pathogenicity of pathogenic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

IAA:

Indole-3-acetic acid

Trp:

Tryptophan

FOC:

Fusarium oxysporum f. sp. ciceris

FDG:

Fusarium delphinoides strain GPK

HPLC:

High Performance Liquid Chromatography

PCR:

Polymerase Chain Reaction

References

  • Agrios, G. N. (1997). Plant pathology (4th ed., p. 635). San Diego: Academic.

    Google Scholar 

  • Arshad, M., & Frankenberger, W. T. (1998). Plant growth-regulating substances in the rhizosphere: Microbial production and functions. Advances in Agronomy, 62, 34–151.

    Google Scholar 

  • Bartel, B. (1997). Auxin biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 51–66.

    Article  PubMed  CAS  Google Scholar 

  • Baayen, R. P., O’Donnell, K., Bonants, P. J. M., Cigelnik, E., Kroon, L. P. N. M., & Roebroeck, E. J. A. (2000). Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease. Phytopathology, 90, 891–900.

    Article  PubMed  CAS  Google Scholar 

  • Black, S. H., & Wheeler, H. (1966). Biochemical effects of victorin on oat tissues and mitochondria. American Journal of Botany, 53, 1108–1112.

    Article  CAS  Google Scholar 

  • Bray, H. G., & Thorpe, W. V. (1954). Analysis of phenolic compounds of interest in metabolism. Methods of Biochemical Analysis, 1, 27–52.

    Article  PubMed  CAS  Google Scholar 

  • Chung, K. R., Shilts, T., Esturk, U., Timmer, L. W., & Ueng, P. (2003). Indole derivatives produced by the fungus Colletotrichum acutum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiology Letters, 226, 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Costacurta, A., & Vanderleyden, J. (1995). Synthesis of phytohormones by plant associated bacteria. Critical Reviews in Microbiology, 21, 1–18.

    Article  PubMed  Google Scholar 

  • Di Pietro, A., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: Exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 4, 315–325.

    Article  PubMed  Google Scholar 

  • FAO (2005). From FAOSTAT on-line statistical database. Food and Agricultural Organization of the United Nations

  • Fiske, C. H., & Subbarow, Y. (1925). The colorimetric determination of phosphorus. The Journal of Biological Chemistry, 66, 376–400.

    Google Scholar 

  • Frankenberger, W. T., & Arshad, M. (1995). Phytohormones in soil: Microbial production and function. New York: Marcel Dekker.

    Google Scholar 

  • Fravel, D., Olivain, C., & Alabouvette, C. (2003). Fusarium oxysporum and its biocontrol. The New Phytologist, 157, 493–502.

    Article  Google Scholar 

  • Glickmann, E., & Dessaux, Y. (1995). A critical examination of the specificity of salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61, 793–796.

    PubMed  CAS  Google Scholar 

  • Haware, M. P., & Nene, Y. C. (1982). Symptomless carriers of the chickpea wilt Fusarium. Plant Disease, 66, 250–251.

    Article  Google Scholar 

  • Jimenez-Diaz, R. M., Trapero-Casas, A. T., & Cabrera de la Colina, J. (1989). Races of Fusarium oxysporum f. sp. ciseris infecting chickpea in southern Spain. In E. C. Tjamos & E. H. Beckman (Eds.), Vascular wilt diseases of plants, vol H28. Berlin: Springer.

    Google Scholar 

  • Jouanneau, J. P., Lapous, D., & Guern, J. (1991). In plant protoplast, the spontaneous expression of defense reactions and responsiveness to exogenous elicitors are under auxin control. Plant Physiology, 96, 459–466.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Martens, D. A., & Frankenberger, W. T. (1994). Assimilation of exogenous 2-C14-indole acetic acid and 3-C14-tryptophan exposed to the roots of three wheat varieties. Plant and Soil, 166, 281–290.

    Article  CAS  Google Scholar 

  • Nene, Y. L., Haware, M. P., Reddy, N. M. V., Philips, J. C., Castro, E. L., & Kotasthane, S. R. (1989). Identification of broad based and stable resistance to wilt and roots in chickpea. Indian Phytopathology, 42, 499–505.

    Google Scholar 

  • Pande, S., Narayana Rao, J., & Sharma, M. (2007). Establishment of chickpea wilt pathogen Fusarium oxysporum f. sp. ciceris in the soil through seed transmission. The Plant Pathology Journal, 23(1), 3–6.

    Article  Google Scholar 

  • Patten, C. L., & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42, 207–220.

    Article  PubMed  CAS  Google Scholar 

  • Pontecorvo, G. (1953). The genetics of Aspergillus nidulans. In M. Demerec (Ed.), Advances in genetics (pp. 141–238). New York: Academic.

    Google Scholar 

  • Ratnaparkhe, M. P., Santra, D. K., Tullu, A., & Muehlbauer, F. J. (1998). Inheritance of inter-simple-sequence-repeat polymorphisms and linkage with a Fusarium wilt resistance gene in chickpea. Theoretical and Applied Genetics, 96, 348–353.

    Article  CAS  Google Scholar 

  • Schroers, H. J., O’Donnell, K., Lamprecht, S. C., Kammeyer, P. L., Johnson, S., Sutton, D. A., et al. (2009). Taxonomy and phylogeny of the Fusarium dimerum species group. Mycology, 101(1), 44–70.

    Article  CAS  Google Scholar 

  • Tsavkelova, E. A., Cherdyntseva, T. A., & Netrusov, A. I. (2005). Auxin production by bacteria associated with orchid roots. Microbiology, 74, 55–62.

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski, B., & Sharon, A. (2002). Biosynthesis, biological role and application of fungal phytohormones. In H. Osiewacz (Ed.), The Mycota: A comprehensive treatise on fungi as experimental systems for basic and applied research (pp. 183–211). Berlin: Springer-Verlag.

    Google Scholar 

  • Vismer, H. F., Marasas, W. F. O., Rheeder, J. P., & Joubert, J. J. (2002). Fusarium dimerum as a cause of human eye infection. Medical Mycology, 40, 399–406.

    PubMed  CAS  Google Scholar 

  • Widmer, T. L., Graham, J. H., & Mitchell, D. J. (1998). Histological comparison of fibrous root infection of disease tolerant and susceptible citrus host by Phytophthora nicotianae and P. palmivora. Phytopathology, 88, 389–395.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, A. W., & Bartel, B. (2005). Auxin: Regulation, action, and interaction. Annals of Botany, 95, 707–735.

    Article  PubMed  CAS  Google Scholar 

  • Zilberstein, M., & Pinkas, Y. (1987). Detached root inoculation- a new method to evaluate resistance to phytophthora root rot in avocado trees. Phytopathology, 77, 841–844.

    Article  Google Scholar 

Download references

Acknowledgments

Authors wish to thank University Grants Commission (UGC) for the financial support through Major Research Project and SAP programme. One of the authors Mr. Guruprasad B K wishes to thank Gulbarga University Gulbarga for providing University fellowship. We are also thankful to Dr. Ramchandra D. Gaikwad, Ecocert India Pvt. Ltd. for statistically analyzing the experimental data and to Agharkar Research Institute, Pune, India for their help in sequencing studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. B. Karegoudar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, G.B., Sajjan, S.S. & Karegoudar, T.B. Pathogenicity of indole-3-acetic acid producing fungus Fusarium delphinoides strain GPK towards chickpea and pigeon pea. Eur J Plant Pathol 131, 355–369 (2011). https://doi.org/10.1007/s10658-011-9813-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9813-3

Keywords

Navigation