Skip to main content
Log in

The Combined Influence of Zinc and Epibrassinolide Increase Tolerance to Salt Stress in Brassica napus L.

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The separate foliar application of zinc (Zn) and epibrassinolide (EBL) have widely proved tolerance to several abiotic stresses, but their combined effect exposed to oxidative stress is an untouched area of investigation. In order to evaluate the physiological mechanism of salt stress tolerance, a pot experiment was conducted. The results revealed that chlorophyll content, efficiency of photosystem ΙΙ, total leaf area, total biomass, membrane stability index and relative water content decreased under 100 mM NaCl concentration whereas, the foliar application of Zn and EBL alone and in combination increased these parameters. In addition, an increase in accumulation of osmoprotectants and antioxidant enzymes activity was noted under stressed conditions, which was more pronounced in rapeseed plants (Brassica napus L.) treated with combined application of Zn and EBL. Salt stress increased H2O2 and MDA content, while the exogenous application of Zn and EBL decreased these oxidative stress markers. It is concluded that Zinc and EBL reduced toxic effect of salinity, while its combined application showed an additive effect and significantly enhanced salt tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Munns, R. and Tester, M., Mechanisms of salinity tolerance, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 651–681.

    Article  CAS  PubMed  Google Scholar 

  2. Hayat, Sh., Hasaa, S.A., Yusuf, M., Hayat, Q., and Ahmad, A., Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata, Environ. Exp. Bot., 2010, vol. 69, pp. 105–112.

    Article  CAS  Google Scholar 

  3. Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410.

    Article  CAS  PubMed  Google Scholar 

  4. Fariduddin, Q., Khalil, R.R.A.E., Mir, B.A., Yusuf, M., and Ahmad, A., 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress, En-viron. Monit. Assess., 2013, vol. 185, pp. 7845–7856.

    Article  CAS  Google Scholar 

  5. Cakmak, I., Possible roles of zinc in protecting plant cells from damage by reactive oxygen species, New Phytol., 2000, vol. 146, pp. 185–205.

    Article  CAS  PubMed  Google Scholar 

  6. Waraich, E.A., Amad, R., Ashraf, M.Y., Saifullah, R.A., and Ahmad, M., Improving agricultural water use efficiency by nutrient management in crop plants, Acta Agric. Scand., B: Soil Plant Sci., 2011, vol. 61, pp. 291–304.

    CAS  Google Scholar 

  7. Xu, L.H., Wang, W.Y., Guo, J.J., Qin, J., Shi, D.Q., Li, Y.L., and Xu, J., Zinc improves salt tolerance by increasing reactive oxygen species scavenging and reducing Na+ accumulation in wheat seedlings, Biol. Plant., 2014, vol. 58, pp. 751–757.

    Article  CAS  Google Scholar 

  8. Jifon, J., Growth environment and leaf anatomy affect nondestructive estimates of chlorophyll and nitrogen in Citrus sp. leaves, J. Am. Soc. Hort. Sci., 2005, vol. 130, pp. 152–158.

    Article  Google Scholar 

  9. Maxwell, K. and Johnson, G.N., Chlorophyll fluorescence—a practical guide, J. Exp. Bot., 2000, vol. 51, pp. 659–668.

    Article  CAS  PubMed  Google Scholar 

  10. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 1973, vol. 39, pp. 205–207.

    Article  CAS  Google Scholar 

  11. Grieve, C.M. and Grattan, S.R., Rapid assay for determination of water soluble quaternary ammonium compounds, Plant Soil, 1983, vol. 70, pp. 303–307.

    Article  CAS  Google Scholar 

  12. Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, pp. 121–126.

    Article  CAS  PubMed  Google Scholar 

  13. Mac-Adam, J.W., Nelson, C.J., and Sharp, R.E., Peroxidase activity in the leaf elongation zone of tall fescue. I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone, Plant Physiol., 1992, vol. 99, pp. 872–878.

    Article  CAS  Google Scholar 

  14. Becana, M., Aparicio-Tejo, P., Irigoyan, J.J., and Sanchez-Diaz, M., Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa, Plant Physiol., 1986, vol. 82, pp. 1169–1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.

    Article  CAS  PubMed  Google Scholar 

  16. Zaho, S.J., Xu, C.C., Zou, Q., and Meng, Q.W., Improvements of the method for measurement of malondialdehyde in plant tissue, Plant Physiol. Commun., 1994, vol. 30, pp. 207–210.

    Google Scholar 

  17. Lutts, S., Kinet, J.M., and Bouharmont, J., NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance, Ann. Bot., 1996, vol. 78, pp. 389–398.

    Article  CAS  Google Scholar 

  18. Rossi, L., Zhang, W., Lombardini, L., and Ma, X., The impact of cerium oxide nano particles on the salt stress responses of Brassica napus L., Environ. Pollut., 2016, vol. 219, pp. 28–36.

    Article  CAS  PubMed  Google Scholar 

  19. Ahmad, P., Ahanger, M.A., Alyemeni, M.N., Wijaya, L., Egamberdieva, D., Bhardwaj, R., and Ashraf, M., Zinc application mitigates the adverse effects of NaCl stress on mustard [Brassica juncea (L.) Czern & Coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content, J. Plant Interact., 2017, vol. 12, pp. 429–437.

    Article  CAS  Google Scholar 

  20. Kaur, S.K., Handa, N., Bali, S., Arora, S., Sharma, A., Kaur, R., and Bhardwaj, R., Modulation of antioxidative defense expression and osmolyte content by co-application of 24-epibrassinolide and salicylic acid in Pb exposed Indian mustard plants, Ecotoxicol. Environ. Saf., 2018, vol. 147, pp. 382–393.

    Article  CAS  PubMed  Google Scholar 

  21. Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J., and Hernandez, J.A., Plant responses to salt stress: adaptive mechanisms, Agronomy, 2017, vol. 7, pp. 1–38.

    Article  CAS  Google Scholar 

  22. Ashraf, M. and Harris, P.J.C., Photosynthesis under stressful environments: an overview, Photosynthetica, 2013, vol. 51, pp. 163–190.

    Article  CAS  Google Scholar 

  23. Kapotis, G., Zervoudakis, G., Veltsistas, T., and Salahas, G., Comparison of chlorophyll meter readings with leaf chlorophyll concentration in Amaranthus v-litus: correlation with physiological processes, Russ. J. Plant Physiol., 2003, vol. 50, pp. 395–397.

    Article  CAS  Google Scholar 

  24. Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A., and Ghassemi-Golezani, K., Physiological responses of soybean (Glycine max L.) to zinc application under salinity stress, Aust. J. Crop Sci., 2011, vol. 5, pp. 1441–1447.

    CAS  Google Scholar 

  25. Jan, A.U., Hadi, F., Midrarullah Nawaz, M.A., and Rahman, K., Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.), Plant Physiol. Biochem., 2017, vol. 116, pp. 139–149.

    Article  CAS  PubMed  Google Scholar 

  26. Gao, S., Ouyang, C., Wang, S., Xu, Y., Tang, L., and Chen, F., Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings, Plant Soil Environ., 2008, vol. 54, pp. 374–381.

    Article  CAS  Google Scholar 

  27. Gill, S.S. and Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, vol. 48, pp. 909–930.

    Article  CAS  PubMed  Google Scholar 

  28. Ahammed, G.J., Ruan, Y.P., Zhou, J., Xia, X.J., Shi, K., Zhou, Y.H., and Yu, J.Q., Brassinosteroid alleviates polychlorinated biphenyls-induced oxidative stress by enhancing antioxidant enzymes activity in tomato, Chemosphere, 2013, vol. 90, pp. 2645–2653.

    Article  CAS  PubMed  Google Scholar 

  29. Sharma, A., Kumar, V., Kanwar, M.K., Thukral, A.K., and Bhardwaj, R., Ameliorating imidacloprid induced oxidative stress by 24-epibrassinolide in Brassica juncea L., Russ. J. Plant Physiol., 2017, vol. 64, pp. 509–517.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. Mokari-Firuzsalari.

Additional information

The article is published in the original.

Abbreviations: CAT—catalase; EBL—24-epibrassinolide; EC— electrical conductivity; Fv/Fm —maximal quantum yield of PSII photochemistry; HSD—honest significant difference; MLR— multiple linear regression; MSI—membrane stability index; POX—peroxidase; RWC—relative water content; SOD— superoxide dismutase; SPAD-502—portable chlorophyll meter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokari-Firuzsalari, S., Khomari, S., Seyed-Sharifi, R. et al. The Combined Influence of Zinc and Epibrassinolide Increase Tolerance to Salt Stress in Brassica napus L.. Russ J Plant Physiol 66, 240–249 (2019). https://doi.org/10.1134/S1021443719020092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443719020092

Keywords:

Navigation