Skip to main content
Log in

Substrate Specificity of Acyl-Lipid Δ9-Desaturase from Cyanobacterium sp. IPPAS B-1200, a Cyanobacterium with Unique Fatty Acid Composition

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Cyanobacterium sp. IPPAS B-1200 is characterized by a high content of rare fatty acids (FAs), both myristic (14:0–30%) and myristoleic (14:1Δ9–10%) in the membrane lipids. Thus, short-chain FAs reach 40% of the sum of all FAs in cells, which is unusual for Cyanobacteria. Monounsaturated palmitoleic acids (16:1Δ9) also reach 40% of the sum of the FAs. We determined the complete nucleotide sequence of the genome of this cyanobacterium and found the only gene for the acyl-lipid Δ9-desaturase, desC1. We cloned this gene and characterized its specificity to the length of the substrate using heterologous expression in Escheriсhia coli. The results show that DesC1 nonspecifically generates olefin bond in FAs with a length of 14, 16, and 18 carbon atoms. This finding confirms that all monoesterifed FAs in Cyanobacterium sp. IPPAS B-1200 are generated by one acyl-lipid Δ9-desaturase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FA(s):

fatty acid(s)

GC:

gas chromatography

MS:

mass spectrometry

PAGE:

polyacrylamide gel electrophoresis

PCR:

polymerase chain reaction

References

  1. Georgianna, D.R. and Mayfield, S.P., Exploiting diversity and synthetic biology for the production of algal biofuels, Nature, 2012, vol. 488, pp. 329–335.

    Article  PubMed  CAS  Google Scholar 

  2. Sarsekeyeva, F., Zayadan, B.K., Usserbaeva, A., Bedbenov, V.S., Sinetova, M.A., and Los, D.A., Cyanofuels—biofuels from cyanobacteria: reality and perspectives, Photosynth. Res., 2015, vol. 125, pp. 329–340.

    Article  PubMed  CAS  Google Scholar 

  3. Sarsekeyeva, F.K., Usserbaeva, A.A., Zayadan, B.K., Mironov, K.S., Sidorov, R.A., Kozlova, A.Yu., Kupriyanova, E.V., Sinetova, M.A., and Los, D.A., Isolation and characterization of a new cyanobacterial strain with a unique fatty acid composition, Adv. Microbiol., 2014, vol. 4, pp. 1033–1043.

    Article  Google Scholar 

  4. Sinetova, M.A., Bolatkhan, K., Sidorov, R.A., Mironov, K.S., Skrypnik, A.N., Kupriyanova, E.V., Bolatkhan, K.Z., Shumskaya, M., and Los, D.A., Polyphasic characterization of the thermotolerant cyanobacterium Desertifilum sp. strain IPPAS B-1220, FEMS Microbiol. Lett., 2017, vol. 364. doi 10.1093/femsle/fnx027

  5. Polashock, J.J., Chin, C.K., and Martin, C.E., Expression of the yeast Δ-9 fatty acid desaturase in Nicotiana tabacum, Plant Physiol., 1992, vol. 100, pp. 894–901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Orlova, I.V., Serebriiskaya, T.S., Popov, V., Merkulova, N., Nosov, A.M., Trunova, T.I., Tsydendambaev, V.D., and Los, D.A., Transformation of tobacco with a gene for the thermophilic acyl–lipid desaturase enhances the chilling tolerance of plants, Plant Cell Physiol., 2003, vol. 44, pp. 447–450.

    Article  PubMed  CAS  Google Scholar 

  7. Liu, X., Sheng, J., and Curtiss, R., III, Fatty acid production in genetically modified cyanobacteria, Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 6899–6904.

    Article  PubMed  Google Scholar 

  8. Choi, Y.J. and Lee, S.Y., Microbial production of short-chain alkanes, Nature, 2013, vol. 502, pp. 571–574.

    Article  PubMed  CAS  Google Scholar 

  9. Los, D.A., Fatty Acid Desaturases, Moscow: Scientific World, 2014.

    Google Scholar 

  10. Amiri, R.M., Yur’eva, N.O., Shimshilashvili, K.R., Goldenkova-Pavlova, I.V., Pchelkin, V.P., Kuznitsova, E.I., Tsydendambaev, V.D., Trunova, T.I., Los, D.A., Jouzani, G.S., and Nosov, A.M., Expression of acyl-lipid Δ12-desaturase gene in prokaryotic and eukaryotic cells and its effect on cold stress tolerance of potato, J. Integr. Plant Biol., 2010, vol. 52, pp. 289–297.

    Article  PubMed  CAS  Google Scholar 

  11. Los, D.A. and Mironov, K.S., Modes of fatty acid desaturation in cyanobacteria: an update, Life, 2015, vol. 5, pp. 554–567.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Starikov, A.Y., Usserbaeva, A.A., Sinetova, M.A., Sarsekeyeva, F.K., Zayadan, B.K., Ustinova, V., Kupriyanova, E.V., Los, D.A., and Mironov, K.S., Draft genome sequence of Cyanobacterium sp. strain IPPAS B-1200 with a unique fatty acid composition, Genome Announc., 2016, vol. 4: e01306–16. doi 10.1128/genomeA.01306-16

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pereira, F.L., Soares, S.C., Dorella, F.A., Leal, C.A., and Figueiredo, H.C., Evaluating the efficacy of the new Ion PGM Hi-Q Sequencing Kit applied to bacterial genomes, Genomics, 2016, vol. 107, pp. 189–198.

    Article  PubMed  CAS  Google Scholar 

  14. Williams, J.G.K., Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803, Methods Enzymol., 1988, vol. 167, pp. 766–778.

    Article  CAS  Google Scholar 

  15. Maniatis, T., Sambrook, J., and Fritsch, E.F., Molecular Cloning: A Laboratory Manual, Cold Springer Harbor: Cold Springer Harbor Lab., 1989.

    Google Scholar 

  16. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A., and Pevzner, P.A., SPAdes: a new crossmark genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol., 2012, vol. 19, pp. 455–477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 2004, vol. 32, pp. 1792–1797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Cowley, A.P., and Lopez, R., Analysis tool web services from the EMBL-EBI, Nucleic Acids Res., 2013, vol. 41: W597–600. doi 10.1093/nar/gkt376

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li, H. and Homer, N., A survey of sequence alignment algorithms for next-generation sequencing, Brief Bioinform., 2010, vol. 11, pp. 473–483.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.

    Article  PubMed  CAS  Google Scholar 

  21. Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G., QUAST: quality assessment tool for genome assemblies, Bioinformatics, 2013, vol. 29, pp. 1072–1075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wada, H., Avelange-Macherel, M.H., and Murata, N., The desA gene of the cyanobacterium Synechocystis sp. strain PCC6803 is the structural gene for delta 12 desaturase, J. Bacteriol., 1993, vol. 175, pp. 6056–6058.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sakamoto, T., Los, D.A., Higashi, S., Wada, H., Nishida, I., Ohmori, M., and Murata, N., Cloning of Δ3 desaturase from cyanobacteria and its use in altering the degree of membrane-lipid unsaturation, Plant Mol. Biol., 1994, vol. 26, pp. 249–263.

    Article  PubMed  CAS  Google Scholar 

  24. Tasaka, Y., Gombos, Z., Nishiyama, Y., Mohanty, P., Ohba, T., Ohki, K., and Murata, N., Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis, EMBO J., 1996, vol. 15, pp. 6416–6425.

    PubMed  CAS  Google Scholar 

  25. Chintalapati, S., Prakash, S., Gupta, P., Ohtani, S., Suzuki, I., Sakamoto, T., Murata, N., and Shivaji, S., A novel Δ9 acyl-lipid desaturase, DesC2, from cyanobacteria acts on fatty acids esterified to the sn-2 position of glycerolipids, Biochem. J., 2006, vol. 398, pp. 207–214. doi 10.1042/BJ20060039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Shih, P.M., Wu, D., Latifi, A., Axen, S.D., Fewer, D.P., Talla, E., Calteau, A., Cai, F., Tandeau de Marsac, N., Rippka, R., Herdman, M., Sivonen, K., Coursin, T., Laurent, T., Goodwin, L., et al., Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing, Proc. Natl. Acad. Sci. USA, 2013, vol. 110, pp. 1053–1058.

    Article  PubMed  Google Scholar 

  27. Panpoom, S., Los, D.A., and Murata, N., Biochemical characterization of a Δ12 acyl-lipid desaturase after overexpression of the enzyme in Escherichia coli, Biochim. Biophys. Acta, 1996, vol. 1390. pp. 323–332.

    Article  Google Scholar 

  28. Raetz, C.R., Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli, Microbiol. Rev., 1978, vol. 42, pp. 614–659.

    PubMed  CAS  Google Scholar 

  29. Feng, Y. and Cronan, J.E., Escherichia coli unsaturated fatty acid synthesis complex transcription of the fabA gene and in vivo identification of the essential reaction catalyzed by FabB, J. Biol. Chem., 2009, vol. 284, pp. 29526–29535.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Starikov, A.Yu., Userbaeva, A.A., Lapina, S.S., Mironov, K.S., Maslova, I.P., Pchelkin, V.P., Zayadan, B.K., Sinetova, M.A., and Los, D.A., Substrate specificity of acyl-lipid Δ9-desaturase from Prochlorothrix hollandica cyanobacterium producing myristoleic acid, Russ. J. Plant Phys., 2017, vol. 64, pp. 560–565.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Los.

Additional information

Published in Russian in Fiziologiya Rastenii, 2018, Vol. 65, No. 4, pp. 270–278.

The article was translated by authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starikov, A.Y., Usserbaeva, A.A., Mironov, K.S. et al. Substrate Specificity of Acyl-Lipid Δ9-Desaturase from Cyanobacterium sp. IPPAS B-1200, a Cyanobacterium with Unique Fatty Acid Composition. Russ J Plant Physiol 65, 490–497 (2018). https://doi.org/10.1134/S102144371804009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102144371804009X

Keywords

Navigation