Skip to main content
Log in

Participation of Nitric Oxide in 24-Epibrassinolide-Induced Heat Resistance of Wheat Coleoptiles: Functional Interactions of Nitric Oxide with Reactive Oxygen Species and Ca Ions

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) effects on heat resistance of wheat (Triticum aestivum L.) coleoptiles induced by 24-epibrassinolide (24-EB) have been investigated. Coleoptiles’ survival after damaging heating (43°С, 10 min) increased when they were treated preliminarily with 5–200 nM of 24-EB. After 24-EB treatment, transient amplification of nitric oxide (NO) and also ROS (superoxide anion-radical (O •−2 ) and hydrogen peroxide) generation by coleoptiles was noted. Coleoptiles pretreatment with inhibitors of nitrate reductase and an enzyme similar to animal NO-synthase partially removed the increase of NO content caused by the action of 24-EB. Amplification of superoxide anion-radical generation caused by 24-EB was depressed under the influence of imidazole (NADPH-oxidase inhibitor). Calcium antagonists (EGTA and neomycin) largely neutralized the 24-EB-induced increase in generation of both O •−2 and NO. The increase in NO content in coleoptile tissues caused by 24-EB was almost completely leveled by antioxidants and partly by imidazole. 24-EB-induced enhancement of the superoxide anion-radical generation was partially suppressed by the action of NO scavenger PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and the inhibitors of nitrate reductase and an enzyme similar to animal NO-synthase. Positive 24-EB effect on the heat resistance of wheat coleoptiles was leveled by PTIO, inhibitors of enzymes that generate NO, antioxidants, an inhibitor of NADPH-oxidase imidazole, and calcium antagonists. A conclusion was made on the role of NO in brassinosteroid signal transduction inducing heat resistance development of coleoptiles and on the functional interaction between NO, ROS, and calcium ions as the signal mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BS:

brassinosteroids

24-EB:

24-epibrassinolide

DMTU:

dimethylthiourea

L-NAME:

NG-nitro-L-arginine methyl ester (NO-synthase inhibitor)

NBT:

nitroblue tetrazolium

PTIO:

2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (NO scavenger)

SNP:

sodium nitroprusside

References

  1. Fariduddin, Q., Yusuf, M., Ahmad, I., and Ahmad, A., Brassinosteroids and their role in response of plants to abiotic stresses, Biol. Plant., 2014, vol. 58, pp. 9–17.

    Article  CAS  Google Scholar 

  2. Bajguz, A. and Hayat, S., Effects of brassinosteroids on the plant responses to environmental stresses, Plant Physiol. Biochem., 2009, vol. 47, pp. 1–8.

    Article  CAS  PubMed  Google Scholar 

  3. Singh, I. and Shono, M., Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato, Plant Growth Regul., 2005, vol. 47, pp. 111–119.

    Article  CAS  Google Scholar 

  4. Xia, X.J., Wang, Y.J., Zhou, Y.H., Tao, Y., Mao, W.H., Shi, K., Asami, T., Chen, Z., and Yu, J.Q., Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber, Plant Physiol., 2009, vol. 150, pp. 801–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Efimova, M.V., Savchuk, A.L., Khasan, A.K., Litvinovskaya, R.P., Khripach, V.A., Kholodova, V.P., and Kuznetsov, Vl.V., Physiological mechanisms of enhancing salt tolerance of oilseed rape plants with brassinosteroids, Russ. J. Plant Physiol., 2014, vol. 61, pp. 733–743.

    Article  CAS  Google Scholar 

  6. Bartoli, C.G., Casalongueb, C.A., Simontacchia, M., Marquez-Garciac, B., and Foyer, C.H., Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress, Environ. Exp. Bot., 2013, vol. 94, pp. 73–88.

    Article  CAS  Google Scholar 

  7. Xia, X.J., Zhou, Y.H., Ding, J., Shi, K., Asami, T., Chen, Z., and Yu, J.Q., Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus, New Phytol., 2011, vol. 191, pp. 706–720.

    Article  CAS  PubMed  Google Scholar 

  8. Kolupaev, Yu.E., Vayner, A.A., Yastreb, T.O., Oboznyi, A.I., and Khripach, V.A., The role of reactive oxygen species and calcium ions in the implementation of the stress-protective effect of brassinosteroids on plant cells, Appl. Biochem. Microbiol., 2014, vol. 50, pp. 658–663.

    Article  CAS  Google Scholar 

  9. Zhao, Y., Qi, Z., and Berkowitz, G.A., Teaching an old hormone new tricks: cytosolic Ca2+ elevation involvement in plant brassinosteroid signal transduction cascades, Plant Physiol., 2013, vol. 163, pp. 555–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yan, J., Guan, L., Sun, Y., Zhu, Y., Liu, L., Lu, R., Jiang, M., Tan, M., and Zhang, A., Calcium and ZmCCaMK are involved in brassinosteroid-induced antioxidant defense in maize leaves, Plant Cell Physiol., 2015, vol. 56, pp. 883–896.

    Article  CAS  PubMed  Google Scholar 

  11. Straltsova, D., Chykun, P., Subramaniam, S., Sosan, A., Kolbanov, D., Sokolik, A., and Demidchik, V., Cation channels are involved in brassinosteroid signalling in higher plants, Steroids, 2015, vol. 97, pp. 98–106.

    Article  CAS  PubMed  Google Scholar 

  12. Kretinin, S.V., Bondarenko, O.M., Kravets, V.S., Khripach, V.A., and Kukhar’, V.P., Role of calcium in the response of cellular metabolism to epibrassinolide in transgenic tobacco cax1 plants, Rep. Natl. Acad. Sci. Ukr., 2015, no. 9, pp. 105–112.

    Google Scholar 

  13. Cui, J.X., Zhou, Y.H., Ding, J.G., Xia, X.J., Shi, K., Chen, S.C., Asami, T., Chen, Z., and Yu, J.Q., Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber, Plant Cell Environ., 2011, vol. 34, pp. 347–358.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu, T., Deng, X.G., Tan, W.R., Zhou, X., Luo, S.S., Han, X.Y., Zhang, D.W., and Lin, H.H., Nitric oxide is involved in brassinosteroid-induced alternative respiratory pathway in Nicotiana benthamiana seedlings' response to salt stress, Physiol. Plant., 2016, vol. 156, pp. 150–163.

    Article  CAS  Google Scholar 

  15. Deng, X.G., Zhu, T., Zou, L.J., Han, X.Y., Zhou, X., Xi, D.H., Zhang, D.-W., and Lin, H.H., Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana, Plant J., 2016, vol. 85, pp. 478–493.

    Article  CAS  PubMed  Google Scholar 

  16. Melekhov, E.I., Ramazanova, L.Kh., and Vasil’eva, A.V., The method of the quantitative estimation of damage and its modifications, Izv. Akad. Nauk SSSR, Ser. Biol., 1983, no. 3, pp. 785–788.

    Google Scholar 

  17. Yusupova, Z.R., Akhmetova, I.E., Khairullin, R.M., and Maksimov, I.V., The effect of chitooligosaccharides on hydrogen peroxide production and anionic peroxidase activity in wheat coleoptiles, Russ. J. Plant Physiol., 2005, vol. 52, pp. 209–212.

    Article  CAS  Google Scholar 

  18. Shorning, B.Yu., Smirnova, E.G., Yaguzhinskii, L.S., and Vanyushin, B.F., Necessity of superoxide production for development of etiolated wheat seedlings, Biochemistry (Moscow), 2000, vol. 65, pp. 1357–1361.

    Article  CAS  Google Scholar 

  19. Zhou, B., Guo, Z., Xing, J., and Huang, B., Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis, J. Exp. Bot., 2005, vol. 56, pp. 3223–3228.

    Article  CAS  PubMed  Google Scholar 

  20. Karpets, Yu.V., Kolupaev, Yu.E., and Vayner, A.A., Functional interaction between nitric oxide and hydrogen peroxide during formation of wheat seedling induced heat resistance, Russ. J. Plant Physiol., 2015, vol. 62, pp. 65–70.

    Article  CAS  Google Scholar 

  21. Thurman, R.G., Ley, H.G., and Scholz, R., Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase, Eur. J. Biochem., 1972, vol. 25, pp. 420–430.

    Article  CAS  PubMed  Google Scholar 

  22. Sagisaka, S., The occurrence of peroxide in a perennial plant, Populus gelrica, Plant Physiol., 1976, vol. 57, pp. 308–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mur, L.A.J., Mandon, J., Persijn, S., Cristescu, S.M., Moshkov, I.E., Novikova, G.V., Hall, M.A., Harren, F.J.M., Hebelstrup, K.H., and Gupta, K.J., Nitric oxide in plants: an assessment of the current state of knowledge, AoB Plants, 2013, vol. 5, p. pls052. doi 10.1093/aobpla/pls052

    Article  PubMed  Google Scholar 

  24. Corpas F.J., Barroso J.B. Nitric oxide synthase-like activity in higher plants, Nitric Oxide, 2017, vol. 68, pp. 5–6. doi 10.1016/j.niox.2016.10.009

    Article  CAS  PubMed  Google Scholar 

  25. Roszer, T., Biosynthesis of nitric oxide in plants, in Nitric Oxide in Plants: Metabolism and Role in Stress Physiology, Khan, M.N., Eds., Basel: Springer-Verlag, 2014, pp. 17–32.

    Chapter  Google Scholar 

  26. Wong, H.L., Pinontoan, R., Hayashi, K., Tabata, R., Yaeno, T., Hasegawa, K., Kojima, C., Yoshioka, H., Iba, K., Kawasaki, T., and Shimamoto, K., Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension, Plant Cell, 2007, vol. 19, pp. 4022–4034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., Hishinuma, H., Senzaki, E., Yamagoe, S., Nagata, K., Nara, M., Suzuki, K., Tanokura, M., and Kuchitsu, K., Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation, J. Biol. Chem., 2008, vol. 283, pp. 8885–8892.

    Article  CAS  PubMed  Google Scholar 

  28. Courtois, C., Besson, A., Dehan, J., Bourque, S., Dobrowolska, G., Pugin, A., and Wendehenne, D., Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases, J. Exp. Bot., 2008, vol. 59, pp. 155–163.

    Article  CAS  PubMed  Google Scholar 

  29. Karpets, Yu.V., Kolupaev, Yu.E., Yastreb, T.O., and Dmitriev, O.P., Possible pathways of heat resistance induction in plant cells by exogenous nitrogen oxide, Cytol. Genet., 2012, vol. 46, pp. 354–359.

    Article  Google Scholar 

  30. Karpets, Yu.V., Kolupaev, Yu.E., Yastreb, T.O., and Oboznyi, A.I., Induction of heat resistance in wheat seedlings by exogenous calcium, hydrogen peroxide, and nitric oxide donor: functional interaction of signal mediators, Russ. J. Plant Physiol., 2016, vol. 63, pp. 490–498.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Kolupaev.

Additional information

Original Russian Text © Yu.V. Karpets, Yu.E. Kolupaev, 2018, published in Fiziologiya Rastenii, 2018, Vol. 65, No. 2, pp. 111–120.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpets, Y.V., Kolupaev, Y.E. Participation of Nitric Oxide in 24-Epibrassinolide-Induced Heat Resistance of Wheat Coleoptiles: Functional Interactions of Nitric Oxide with Reactive Oxygen Species and Ca Ions. Russ J Plant Physiol 65, 177–185 (2018). https://doi.org/10.1134/S1021443718010053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443718010053

Keywords

Navigation