Skip to main content
Log in

He–Ne laser illumination ameliorates photochemical impairment in ultraviolet-B stressed-wheat seedlings via detoxifying ROS cytotoxicity

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The protective effect and physiochemical mechanism of He-Ne laser illumination on photochemical impairment were evaluated by investigating chlorophyll fluorescence characteristics, photochemical activities of two photosystems, reactive oxygen species (ROS) levels and antioxidant enzyme activities in UV-B stressed-wheat (Triticum aestivum L.) seedlings. The results showed that enhanced UV-B stress significantly inhibited plant growth, reduced photosynthetic pigment content and antioxidant enzyme activities, while increased intracellular ROS levels. Meanwhile, UV-B stress also altered chlorophyll fluorescence characteristics and photochemical activities of seedlings. However, He-Ne laser illumination markedly improved photochemical activities and photosynthetic efficiency of two photosystems through detoxifying excessive ROS productions. Illumination with white fluorescent lamps (W), red light (R), or red light, then far-red light (R + FR) had not alleviated the inhibitory effect of UV-B stress on plant growth, suggesting that He-Ne laser illumination might be responsible for UV-B-stressed seedlings due to its regulation for intracellular ROS levels and plant oxidant/antioxidant balance. Furthermore, the laser alone also showed a positive impact on photochemical activities of photosystem I and photosystem II in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

POD:

peroxidase

R:

red light

R + FR:

red light + far-red light

SOD:

superoxide dismutase

W:

white fluorescent

References

  1. Rousseaux, C.M., Flint, S.D., Searles, P.S., and Caldwell, M.M., Plant responses to current solar ultraviolet- B radiation and supplemented solar ultraviolet-B radiation simulating ozone depletion: an experimental comparison, Photochem. Photobiol., 2004, vol. 80, pp. 224–230.

    Article  CAS  PubMed  Google Scholar 

  2. Choudhary, K.K. and Agrawal, S.B., Ultraviolet-B induced changes in morphological, physiological and biochemical parameters of two cultivars of pea (Pisum sativum L.), Ecotox. Environ. Safe., 2014, vol. 100, pp. 178–187.

    Article  CAS  Google Scholar 

  3. Kreslavskii, V.D., Shirshikova, G.N., Lyubimov, V.Y., Shmarev, A.N., Boutanaev, A.M., Kosobryukhov, A.A., Schmitt, F.J., Friedrich, T., and Allakhverdiev, S.I., Effect of preillumination with red light on photosynthetic parameters and oxidant-/antioxidant balance in Arabidopsis thaliana in response to UV-A, J. Photochem. Photobiol. B: Biology, 2013, vol. 127, pp. 229–236.

    Article  Google Scholar 

  4. Takahashi, S., Milward, S.E., Fan, D.Y., Chow, W.S., and Badger, M.R., How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol., 2009, vol. 149, pp. 1560–1567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hajer, P.M. and Hideg, E., Developmental stage is an important factor that determines the antioxidant responses of young and old grape vine leaves under UV irradiation in a green-house, Plant Physiol. Biochem., 2011, vol. 50, pp. 15–23.

    Google Scholar 

  6. Yang, L.Y., Han, R., and Sun, Y., Damage repair effect of He-Ne laser on wheat exposed to enhanced ultraviolet- B radiation, Plant Physiol. Biochem., 2012, vol. 57, pp. 218–221.

    Article  CAS  PubMed  Google Scholar 

  7. Weber, C., Marchat, L.A., Guillen, N., and César, L.C., Effects of DNA damage induced by UV irradiation on gene expression in the protozoan parasite Entamoeba histolytica, Mol. Biochem. Parasit., 2009, vol. 164, pp. 165–169.

    Article  CAS  Google Scholar 

  8. Fabón, G., Monforte, L., Tomás-Las-Heras, R., Núñez-Olivera, E., and Martínez-Abaigar, J., Dynamic response of UV-absorbing compounds, quantum yield and the xanthophyll cycle to diel changes in UV-B and photosynthetic radiation in an aquatic liverwort, J. Plant Physiol., 2012, vol. 169, pp. 20–26.

    Article  PubMed  Google Scholar 

  9. Demidchik, V., Mechanisms of oxidative stress in plants: from classical chemistry to cell biology, Environ. Exp. Bot., 2015, vol. 109, pp. 212–228.

    Article  CAS  Google Scholar 

  10. Kozuleva, M.A., Petrova, A.A., Mamedov, M.D., and Semenov, A.Y., O2 reduction by photosystem I involves phylloquinone under steady-state illumination, FEBS Lett., 2014, vol. 588, pp. 4364–4368.

    Article  CAS  PubMed  Google Scholar 

  11. Qi, Z., Yue, M., and Wang, X.L., Laser pretreatment protects cells of broad bean from UV-B radiation damage, J. Photochem. Photobiol. B: Biology, 2000, vol. 59, pp. 33–37.

    Article  CAS  PubMed  Google Scholar 

  12. Chen, Y.P., Yue, M., and Wang, X.L., Influence of He–Ne laser irradiation on seeds thermodynamic parameters and seedlings growth of Isatis indogotica, Plant Sci., 2005, vol. 168, pp. 601–606.

    Article  CAS  Google Scholar 

  13. Chen, Y.P., Jia, J.F., and Yue, M., Effect of CO2 laser radiation on physiological tolerance of wheat seedlings exposed to chilling stress, Photochem. Photobiol., 2010, vol. 86, pp. 600–605.

    Article  CAS  PubMed  Google Scholar 

  14. Qiu, Z.B., Li, J.T., Zhang, M.M., Bi, Z.Z., and Li, Z.L., He-Ne laser pretreatment protects wheat seedlings against cadmium-induced oxidative stress, Ecotox. Environ. Safe., 2013, vol. 88, pp. 135–141.

    Article  CAS  Google Scholar 

  15. Perveen, R., Ali, Q., Ashraf, M., Al-Qurainy, F., Jamil, Y., and Ahmad, M.R., Effects of different doses of low power continuous wave He-Ne laser radiation on some seed thermodynamic and germination parameters, and potential enzymes involved in seed germination of sunflower (Helianthus annuus L.), Photochem. Photobiol., 2010, vol. 86, pp. 1050–1055.

    Article  CAS  PubMed  Google Scholar 

  16. Qi, Z., Yue, M., and Wang, X.L., The damage repair role of He–Ne laser on plants exposed to different intensities of ultraviolet-B radiation, Photochem. Photobiol., 2002, vol. 75, pp. 680–686.

    Article  CAS  PubMed  Google Scholar 

  17. Wittenberghe, S.V., Alonso, L., Verrelst, J., Hermans, I., Valcke, R., Veroustraete, F., Moreno, J., and Samson, R., A field study on solar-induced chlorophyll fluorescence and pigment parameters along a vertical canopy gradient of four tree species in an urban environment, Sci. Total Environ., 2014, vols. 466–467, pp. 185–194.

    Google Scholar 

  18. Bing, L., Feng, C.C., Li, J.L., Li, X.X., Zhao, B.C., Shen, Y.Z., Huang, Z.J., and Ge, R.C., Overexpression of the AtSTK gene increases salt, PEG and ABA tolerance in Arabidopsis, J. Plant Biol., 2013, vol. 56, pp. 375–382.

    Article  CAS  Google Scholar 

  19. Gao, L.M., Li, Y.F., and Han, R., He-Ne laser preillumination improves the resistance of tall fescue (Festuca arundinacea Schreb.) seedlings to high saline conditions, Protoplasma, 2015, vol. 252, pp. 1135–1148.

    Article  CAS  PubMed  Google Scholar 

  20. Qu, C.X., Liu, C., Gong, X.L., Li, C.X., Hong, M.M., and Wang, L., Impairment of maize seedling photosynthesis caused by a combination of potassium deficiency and salt stress, Environ. Exp. Bot., 2012, vol. 75, pp. 134–141.

    Article  CAS  Google Scholar 

  21. Porra, R.J., Thompson, W.A., and Kriedmann, P.E., Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy, Acta Biochim. Biophys., 1989, vol. 975, pp. 384–394.

    Article  CAS  Google Scholar 

  22. Rao, K.V.M. and Sresty, T.V.S., Antioxidant parameters in the seedlings of pigeon pea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stress, Plant Sci., 2000, vol. 157, pp. 113–128.

    Article  Google Scholar 

  23. Zhang, J.X. and Kirham, M.B., Drought stressinduced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species, Plant Cell Physiol., 1994, vol. 35, pp. 785–791.

    Article  CAS  Google Scholar 

  24. Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.

    CAS  Google Scholar 

  25. Cembrowska-Lech, D., Koprowski, M., and Kepczyński, J., Germination induction of dormant Avena fatua caryopses by KAR1 and GA3 involving the control of reactive oxygen species (H2O2 and O2 •−) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers, J. Plant Physiol., 2015, vol. 176, pp. 169–179.

    Article  CAS  PubMed  Google Scholar 

  26. Laspina, N.V., Groppa, M.D., Tomaro, M.L., and Benavides, M.P., Nitric oxide protects sunflower leaves against Cd-induced oxidative stress, Plant Sci., 2005, vol. 169, pp. 323–330.

    Article  CAS  Google Scholar 

  27. Sang, L.L., Ding, W., Zhao, M.G., Sun, B.T., and Zhang, L.X., Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed, Plant Sci., 2006, vol. 171, pp. 449–458.

    Article  Google Scholar 

  28. Vital, S.A., Fowler, R.W., Virgen, A., Gossett, D.R., Banks, S.W., and Rodriguez, J., Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue, Environ. Exp. Bot., 2008, vol. 62, pp. 60–68.

    Article  CAS  Google Scholar 

  29. Zhao, L., He, J.X., Wang, X.M., and Zhang, L.X., Nitric oxide protects against polyethylene glycolinduced oxidative damage in two ecotypes of reed suspension cultures, J. Plant Physiol., 2008, vol. 165, pp. 182–191.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. F. Li.

Additional information

The article is published in the original.

Electronic supplementary material

11183_2017_6925_MOESM1_ESM.pdf

He-Ne Laser Illumination Ameliorates Photochemical Impairment in Ultraviolet-B Stressed-Wheat Seedlings Via Detoxifying ROS Cytotoxicity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y.F., Gao, L.M. & Han, R. He–Ne laser illumination ameliorates photochemical impairment in ultraviolet-B stressed-wheat seedlings via detoxifying ROS cytotoxicity. Russ J Plant Physiol 64, 766–775 (2017). https://doi.org/10.1134/S1021443717050041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717050041

Keywords

Navigation