Skip to main content
Log in

Overexpression of a peanut NAC gene, AhNAC4, confers enhanced drought tolerance in tobacco

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

NAC is one of the most abundant plant-specific groups of transcription factors, which play important roles in plant growth and development regulation, as well as in biotic and abiotic stress responses. In the present study, a stress-responsive NAC gene, AhNAC4, was isolated from a cDNA library of peanut (Arachis hypogaea L.) immature seeds, and characterized for its role in drought tolerance. AhNAC4 shared high amino acid similarity with NAC proteins belonging to the ATAF subfamily. The expression analysis indicated that AhNAC4 was highly induced by drought, salinity and ABA treatments. Transient expression analysis showed the AhNAC4-GFP fusion protein was exclusively localized in the nucleus of onion epidermal cells. Transactivation assays in yeast cells demonstrated that AhNAC4 functioned as a transcription activator and its C-terminus contained the activation domain. Overexpression of AhNAC4 confers enhanced drought tolerance in transgenic tobacco plants. The improved drought tolerance was associated with more stomatal closure and higher water use efficiency. Collectively, our results indicated that AhNAC4 functions as an important regulator in response to drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

meJA:

methyl jasmonate

TF:

transcription factor

WT:

wild type

References

  1. Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., Carninci, P., Hayashizaki, Y., Suzuki, K., Kojima, K., Takahara, Y., Yamamoto, K., et al., Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana, DNA Res., 2003, vol. 10, pp. 239–247.

    Article  CAS  PubMed  Google Scholar 

  2. Fang, Y., You, J., Xie, K., Xie, W., and Xiong, L., Systematic sequence analysis and identification of tissuespecific or stress-responsive genes of NAC transcription factor family in rice, Mol. Genet. Genomics, 2008, vol. 280, pp. 547–563.

    Article  CAS  PubMed  Google Scholar 

  3. Mochida, K., Yoshida, T., Sakurai, T., Yamaguchi-Shinozaki, K., Shinozaki, K., and Tran, L.S., LegumeTFDB: an integrative database of Glycine max, Lotus japonicus and Medicago truncatula transcription factors, Bioinformatics, 2010, vol. 26, pp. 290–291.

    Article  CAS  PubMed  Google Scholar 

  4. Shen, H., Yin, Y.B., Chen, F., Xu, Y., and Dixon, R.A., A bioinformatic analysis of NAC genes for plant cell wall development in relation to ligocellulosic bioenergy production, Bioenerg. Res., 2009, vol. 2, pp. 217–232.

    Article  Google Scholar 

  5. Nuruzzaman, M., Sharoni, A.M., and Kikuchi, S., Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants, Front. Microbiol., 2013, vol. 4:248.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tran, L.S., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K., Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter, Plant Cell, 2004, vol. 16, pp. 2481–2498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, X., Basnayake, B.M., Zhang, H., Li, G., Li, W., Virk, N., Mengiste, T., and Song, F., The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulation of defense responses against necrotrophic fungal and bacterial pathogens, Mol. Plant–Microbe Interact., 2009, vol. 22, pp. 1227–1238.

    Article  CAS  PubMed  Google Scholar 

  8. Wu, Y., Deng, Z., Lai, J., Zhang, Y., Yang, C., Yin, B., Zhao, Q., Zhang, L., Li, Y., Yang, C., and Xie, Q., Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses, Cell Res., 2009, vol. 19, pp. 1279–1290.

    Article  CAS  PubMed  Google Scholar 

  9. Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., and Xiong, L., Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 12987–12992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ohnishi, T., Sugahara, S., Yamada, T., Kikuchi, K., Yoshiba, Y., Hirano, H.Y., and Tsutsumi, N., OsNAC6, a member of the NAC gene family, is induced by various stresses in rice, Genes Genet. Syst., 2005, vol. 80, pp. 135–139.

    Article  CAS  PubMed  Google Scholar 

  11. Nakashima, K., Tran, L.S., Nguyen, D.V., Fujita, M., Maruyama, K., Todaka, D., Ito, Y., Hayashi, N., Shinozaki, K., and Yamaguchi-Shinozaki, K., Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice, Plant J., 2007, vol. 51, pp. 617–630.

    Article  CAS  PubMed  Google Scholar 

  12. Jeong, J.S., Kim, Y.S., Baek, K.H., Jung, H., Ha, S.H., Choi, Y.D., Kim, M.K., Reuzeau, C., and Kim, J.K., Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions, Plant Physiol., 2010, vol. 153, pp. 185–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, Z., Feng, S., Pandey, M.K., Chen, X., Culbreath, A.K., Varshney, R.K., and Guo, B., Identification of expressed resistance gene analogs from peanut (Arachis hypogaea L.) expressed sequence tags, J. Integr. Plant Biol., 2013, vol. 55, pp. 453–461.

    Article  CAS  PubMed  Google Scholar 

  14. Govind, G., Harshavardhan, V.T., Patricia, J.K., Dhanalakshmi, R., Senthil Kumar, M., Sreenivasulu, N., and Udayakumar, M., Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut, Mol. Genet. Genomics, 2009, vol. 281, pp. 591–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, X., Zhang, B.Y., Hong, L., Su, L.C., Liang, X.Q., Li, X.Y., and Li, L., Molecular characterization of Arachis hypogaea NAC 2 (AhNAC2) reveals it as a NAC-like protein in peanut, Biotechnol. Biotechnol. Equip., 2010, vol. 24, pp. 2066–2070.

    Article  CAS  Google Scholar 

  16. Liu, X., Liu, S., Wu, J.L., Zhang, B.Y., Li, X.Y., Yan, Y.C., and Li, L., Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging, Plant Physiol. Biochem., 2013, vol. 70, pp. 354–359.

    Article  CAS  PubMed  Google Scholar 

  17. Shao, Q.S., Shu, S., Du, J., Xing, W.W., and Guo, S.R., Effects of NaCl stress on nitrogen metabolism of cucumber seedlings, Russ. J. Plant Physiol., 2015, vol. 62, pp. 595–603.

    Article  CAS  Google Scholar 

  18. Bi, Y.P., Liu, W., Xia, H., Su, L., Zhao, C.Z., Wan, S.B., and Wang, X.J., EST sequencing and gene expression profiling of cultivated peanut (Arachis hypogaea L.), Genome, 2010, vol. 53, pp. 832–839.

    Article  CAS  PubMed  Google Scholar 

  19. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S., MEGA6: Molecular Evolutionary Genetics Analysis version 6, Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang, S., Sun, Y., and Wang, S., Selection of reference genes in peanut seed by real-time quantitative polymerase chain reaction, Int. J. Food Sci. Technol., 2011, vol. 46, pp. 2191–2196.

    Article  CAS  Google Scholar 

  21. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method, Methods, 2001, vol. 25, pp. 402–408.

    Article  CAS  PubMed  Google Scholar 

  22. Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G., and Fraley, R.T., A simple and general method for transferring genes into plants, Science, 1985, vol. 227, pp. 1229–1231.

    Article  CAS  Google Scholar 

  23. Yu, H., Chen, X., Hong, Y.Y., Wang, Y., Xu, P., Ke, S.D., Liu, H.Y., Zhu, J.K., Oliver, D.J., and Xiang, C.B., Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density, Plant Cell, 2008, vol. 20, pp. 1134–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., Potter, S.C., Punta, M., Qureshi, M., Sangrador-Vegas, A., Salazar, G.A., Tate, J., and Bateman, A., The Pfam protein families database: towards a more sustainable future, Nucleic Acids Res., 2016, vol. 44, pp. D279–285.

    Article  PubMed  Google Scholar 

  25. Hua, S.J. and Sun, Z.R., Support vector machine approach for protein subcellular localization prediction, Bioinformatics, 2001, vol. 17, pp. 721–728.

    Article  CAS  PubMed  Google Scholar 

  26. Olsen, A.N., Ernst, H.A., Leggio, L.L., and Skriver, K., NAC transcription factors: structurally distinct, functionally diverse, Trends Plant Sci., 2005, vol. 10, pp. 79–87.

    Article  CAS  PubMed  Google Scholar 

  27. Pinheiro, G.L., Marques, C.S., Costa, M.D., Reis, P.A., Alves, M.S., Carvalho, C.M., Fietto, L.G., and Fontes, E.P., Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response, Gene, 2009, vol. 444, pp. 10–23.

    Article  CAS  PubMed  Google Scholar 

  28. Meng, Q., Zhang, C., Gai, J., and Yu, D., Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean (Glycine max (L.) Merr.), J. Plant Physiol., 2007, vol. 164, pp. 1002–1012.

    Article  CAS  PubMed  Google Scholar 

  29. Tran, L.P., Quach, T.N., Guttikonda, S.K., Aldrich, D.L., Kumar, R., Neelakandan, A., Vallivodan, B., and Nguyen, H.T., Molecular characterization of stress-inducible GmNAC genes in soybean, Mol. Genet. Genomics, 2009, vol. 281, pp. 647–664.

    Article  CAS  PubMed  Google Scholar 

  30. Fang, Y., Liao, K., Du, H., Xu, Y., Song, H., Li, X., and Xiong, L., A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice, J. Exp. Bot., 2015, vol. 66, pp. 6803–6817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Shan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, G.Y., Shao, F.X., Xu, P.L. et al. Overexpression of a peanut NAC gene, AhNAC4, confers enhanced drought tolerance in tobacco. Russ J Plant Physiol 64, 525–535 (2017). https://doi.org/10.1134/S1021443717040161

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717040161

Keywords

Navigation