Skip to main content
Log in

Cytokinins contribute to realization of nitric oxide growth-stimulating and protective effects on wheat plants

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

We investigated effects of sodium nitroprusside (SNP), the donor of nitric oxide (NO), on the growth and hormonal system of wheat plants (Triticum aestivum L.) in normal conditions and after salt stress (2% NaCl). During germination of seeds treated with SNP (50–500 μM), we obtained the SNP concentration (200 μM) optimal for stimulation of seedling growth estimated by increase in seed germination capacity and seedlings' linear sizes and their fresh and dry biomass. A comparative analysis of SNP (200 μM) effects, after seed germination in the medium with SNP or pretreatment of 3-day-old seedlings, showed SNP ability to increase the wheat plant resistance to subsequent effects of sodium chloride salinity at both treatment methods. Protective SNP effects appeared in the reduction of stress inhibitory action on seedling growth rates and significant reduction in the level of lipid peroxidation and exosmosis of electrolytes. An important contribution to realization of the growth-stimulating and protective effects of NO is associated with its ability to influence the state of the hormonal system of wheat plants due to an increase in the concentration of hormones of a cytokinin nature under normal conditions and the prevention of a decrease in their level under stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SNP:

sodium nitroprusside

References

  1. Krasylenko, Yu.A., Yemets, A.I., and Blume, Ya.B., Functional role of nitric oxide in plants, Russ. J. Plant Physiol., 2010, vol. 57, pp. 451–461.

    Article  CAS  Google Scholar 

  2. Sanz, L., Albertos, P., Mateos, I., Sanchez-Vicente, I., Fernandez-Marcos, M., and Lorenzo, O., Nitric oxide (NO) and phytohormones crosstalk during early plant development, J. Exp. Bot., 2015, vol. 66, pp. 2857–2868.

    Article  CAS  PubMed  Google Scholar 

  3. Mamaeva, A.S., Fomenkov, A.A., Nosov, A.V., Moshkov, I.E., Mur, L.A.J., Hall, M.A., and Novikova, G.V., Regulatory role of nitric oxide in plants, Russ. J. Plant Physiol., 2015, vol. 62, pp. 427–440.

    Article  CAS  Google Scholar 

  4. Šírová, J., Sedlářová, M., Piterková, J., Luhová, L., and Petřivalský, M., The role of nitric oxide in the germination of plant seeds and pollen, Plant Sci., 2011, vol. 181, pp. 560–572.

    Article  PubMed  Google Scholar 

  5. Pagnussat, G.C., Simontachii, M., Puntarulo, S., and Lamattina, L., Nitric oxide is required for root organogenesis, Plant Physiol., 2002, vol. 129, pp. 954–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hu, X., Neill, S.J., Tang, Z., and Cai, W., Nitric oxide mediates gravitropic bending in soybean roots, Plant Physiol., 2005, vol. 137, pp. 663–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Neill, S., Barroso, R., Bright, J., Desikan, R., Hancock, J., Harrison, J., Morris, P., Ribeiro, D., and Wilson, J., Nitric oxide, stomatal closure, and abiotic stress, J. Exp. Bot., 2008, vol. 59, pp. 165–176.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, Y., Zhang, Y., Wang, X., Cui, J., Xia, X., Shi, K., and Yu, J., Effects of nitrogen form on growth, CO2 assimilation, chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice plants, J. Zhejiang Univ., Sci. B., 2011, vol. 12, pp. 126–134.

    Article  CAS  Google Scholar 

  9. Domingos, P., Prado, A.M., Wong, A., Gehring, Ch., and Feijo, J.A., Nitric oxide: a multitasked signaling gas in plants, Mol. Plant, 2015, vol. 8, pp. 506–520.

    Article  CAS  PubMed  Google Scholar 

  10. Manjunatha, G., Lokesh, V., and Neelwarne, B., Nitric oxide in fruit ripening: trends and opportunities, Biotechnol. Adv., 2010, vol. 28, pp. 489–499.

    Article  CAS  PubMed  Google Scholar 

  11. Mur, L.A.J., Prats, E., Pierre, S., Hall, M., and Hebelstrup, K.H., Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways, Front. Plant Sci., 2013, vol. 4, p. 215. doi 10.3389/ fpls.2013.00215

    PubMed  PubMed Central  Google Scholar 

  12. Tian, X. and Lei, Y., Nitric oxide treatment alleviates drought stress in wheat seedlings, Biol. Plant., 2006, vol. 50, pp. 775–778.

    Article  CAS  Google Scholar 

  13. Boyarshinov, A.V. and Asafova, E.V., Stress responses of wheat leaves to dehydration: participation of endogenous NO and effect of sodium nitroprusside, Russ. J. Plant Physiol., 2011, vol. 58, pp. 1034–1039.

    Article  CAS  Google Scholar 

  14. Zheng, Ch., Jiang, D., Liu, F., Dai, T., Liu, W., Jing, Q., and Cao, W., Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity, Environ. Exp. Bot., 2009, vol. 67, pp. 222–227.

    Article  CAS  Google Scholar 

  15. Dong, Y.J., Jinc, S.S., Liu, S., Xu, L.L., and Kong, J., Effects of exogenous nitric oxide on growth of cotton seedlings under NaCl stress, J. Soil Sci. Plant Nutr., 2014, vol. 14, pp. 1–13. doi 10.4067/s0718-95162014005000001

    Google Scholar 

  16. Gil'vanova, I.R., Enikeev, A.R., Stepanov, S.Yu., and Rakhmankulova, Z.F., Involvement of salicylic acid and nitric oxide in protective reactions of wheat under the influence of heavy metals, Appl. Biochem. Mikrobiol., 2012, vol. 48, no. 1, pp. 90–94.

    Article  Google Scholar 

  17. Sun, Ch., Lu, L., Liu, L., Liu, W., Yu, Y., Liu, X., Hu, Y., Jin, Ch., and Lin, X., Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum), New Phytol., 2014, vol. 201, pp. 1240–1250.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, M., Chen, L., Zhang, L., and Zhang, W., Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis, Plant Physiol., 2009, vol. 151, pp. 755–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karpets, Yu.V., Kolupaev, Yu.E., and Vayner, A.A., Functional interaction between nitric oxide and hydrogen peroxide during formation of wheat seedling induced heat resistance, Russ. J. Plant Physiol., 2015, vol. 62, pp. 65–70.

    Article  CAS  Google Scholar 

  20. Tian, X.R. and Lei, Y.B., Physiological responses of wheat seedlings to drought and UV-B radiation. Effect of exogenous sodium nitroprusside application, Russ. J. Plant Physiol., 2007, vol. 54, pp. 676–682.

    Article  CAS  Google Scholar 

  21. Shakirova, F.M., Bezrukova, M.V., Fatkhutdinova, R.A., Sakhabutdinova, A.R., and Fatkhutdinova, D.R., Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity, Plant Sci., 2003, vol. 164, pp. 317–322.

    Article  CAS  Google Scholar 

  22. Bezrukova, M., Kildibekova, A., and Shakirova, F., WGA reduces the level of oxidative stress in wheat seedlings under salinity, Plant Growth Regul., 2008, vol. 54, pp. 195–201.

    Article  CAS  Google Scholar 

  23. Shakirova, F., Avalbaev, A., Bezrukova, M., Fatkhutdinova, R., Maslennikova, D., Yuldashev, R., Allagulova, C., and Lastochkina, O., Hormonal intermediates in the protective action of exogenous phytohormones in wheat plants under salinity, in Phytohormones and Abiotic Stress Tolerance in Plants, Khan, N., Nazar, R., Iqbal, N., and Anjum, N., Eds., Berlin: Springer-Verlag, 2012, pp. 185–228.

    Chapter  Google Scholar 

  24. Ryu, H. and Cho, Y.G., Plant hormones in salt stress tolerance, J. Plant Biol., 2015, vol. 58, pp. 147–155.

    Article  CAS  Google Scholar 

  25. Freschi, L., Nitric oxide and phytohormone interaction: current status and perspectives, Front. Plant Sci., 2013, vol. 4, p. 398. doi 10.3389/fpls.2013.00398

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li, X., Pan, Y., Chang, B., Wang, Y., and Tang, Z., NO promotes seed germination and seedling growth under high salt may depend on EIN3 protein in Arabidopsis, Front. Plant Sci., 2016, vol. 6, p. 1203. doi 10.3389/ fpls.2015.01203

    PubMed  PubMed Central  Google Scholar 

  27. Argueso, C.T., Raines, T., and Kieber, J.J., Cytokinin signaling and transcriptional networks, Curr. Opin. Plant Biol., 2010, vol. 13, pp. 533–539.

    Article  CAS  PubMed  Google Scholar 

  28. Ha, S., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., and Tran, L.S.Ph., Cytokinins: metabolism and function in plant adaptation to environmental stresses, Trends Plant Sci., 2012, vol. 17, pp. 172–179.

    Article  CAS  PubMed  Google Scholar 

  29. Alavi S.M.N., Arvin M.J., and Kalantari, K.M., Salicylic acid and nitric oxide alleviate osmotic stress in wheat (Triticum aestivum L.) seedlings, J. Plant Interact., 2014, vol. 9, pp. 683–688.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Shakirova.

Additional information

Original Russian Text © D.R. Maslennikova, Ch.R. Allagulova, K.A. Fedorova, A.A. Plotnikov, A.M. Avalbaev, F.M. Shakirova, 2017, published in Fiziologiya Rastenii, 2017, Vol. 64, No. 5, pp. 355–362.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslennikova, D.R., Allagulova, C.R., Fedorova, K.A. et al. Cytokinins contribute to realization of nitric oxide growth-stimulating and protective effects on wheat plants. Russ J Plant Physiol 64, 665–671 (2017). https://doi.org/10.1134/S1021443717040094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717040094

Keywords

Navigation