Skip to main content
Log in

On the ill-defined notion of the Milankovitch Theory and its influence on the development of the orbital theory of the paleoclimate

  • Point of View
  • Published:
Herald of the Russian Academy of Sciences Aims and scope Submit manuscript

Abstract

The unique situation around the best-known and universally recognized version of the orbital theory of the paleoclimate (OTP), the Milankovitch theory, is analyzed. The problem lies in the extreme diversity in how the essence of this theory is understood both by various authors and by the same scholars in different periods of their activity. The most impressive fact is that five authors, laureates of the Milutin Milankovitch Medal, are not only at variance in the understanding of its essence but also raise substantial objections relative to a number of its principal theses or even cast doubts on the verity of the paleoclimatic part of the theory, which nevertheless is declared practically universally as the basis of the OTP. This situation hinders the development of a correct, mathematically strict OTP of the Pleistocene, the creation of which will promote a better understanding of the mechanism of the Earth’s “climatic machine” and, consequently, more reliable forecasts of anthropogenic forcing on the natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Bol’shakov, The New Concept of the Orbital Theory of Paleoclimate (Mosk. Gos. Univ., Moscow, 2003) [in Russian].

    Google Scholar 

  2. G. Roe, “In defense of Milankovitch,” Geophys. Res. Lett. 33, 1–5 (2006).

    Article  Google Scholar 

  3. V. A. Bol’shakov and A. P. Kapitsa, “Lessons of the development of the orbital theory of paleoclimate,” Herald Russ. Acad. Sci. 81 (4), 387–396 (2011).

    Article  Google Scholar 

  4. S. Clemens and R. Tiedemann, “Eccentricity forcing of Pliocene–Early Pleistocene climate revealed in a marine oxygen-isotope record,” Nature 385, 801 (1997).

    Article  CAS  Google Scholar 

  5. W. Guangjian, P. Baotian, G. Qingyu, and X. Dunsheng, “Terminations and their correlation with solar insolation in the Northern Hemisphere: A record from a loess section in Northwest China,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 216, 267–277 (2005).

    Article  Google Scholar 

  6. A. Grubic, “The astronomic theory of climatic changes of Milutin Milankovich,” Episodes, No. 3, 197–203 (2006).

    Google Scholar 

  7. M. Milanković, “Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen,” in Koppen–Geigersches Handbuch der Klimatologie (Berlin, 1930), Vol. 1, Part A.

  8. M. Milankovitch, Mathematical Climatology and the Astronomical Theory of Climate Oscillations (GONTI, Moscow, 1939).

    Google Scholar 

  9. J. A. Adhémar, Les revolutions de la mer: Déluges périodiques (Carilian-Goeury & V. Dalmont, Paris, 1842).

    Google Scholar 

  10. J. Croll, Climate and Time in Their Geological Relations: A Theory of Secular Changes of the Earth’s Climate (Edward Stanford, London, 1875).

    Google Scholar 

  11. V. A. Bol’shakov, “An answer to I.I. Smul’skii’s Criticism,” Herald Russ. Acad. Sci. 83 (1), 55–58.

  12. Milankovitch and Climate: Understanding the Response to Astronomical Forcing. NATO Science Ser. C, Ed. by A. L. Berger, J. Imbrie, J. Hays, G. Kukla, and B. Saltzman (Reidel, Dordrecht, 1984).

  13. J. D. Hays, J. Imbrie, and N. Shackleton, “Variation in the Earth’s orbit: Pacemaker of the ice ages,” Science 194, 1121–1132 (1976).

    Article  CAS  Google Scholar 

  14. V. A. Bol’shakov, “A new concept of the astronomical theory of paleoclimate: Two steps backward, one step forward,” Izv., Phys. Solid Earth 37 (11), 906–916 (2001).

    Google Scholar 

  15. J. Imbrie, “Astronomical theory of the Pleistocene ice ages: A brief historical review,” Icarus 50, 408–422 (1982).

    Article  Google Scholar 

  16. M. Milankovitch, Kanon der Erdbestrahlung und seine Anwendung auf das iszeitenproblem (Royal Serbian Academy, Beograd, 1941).

    Google Scholar 

  17. J. Imbrie and J. Z. Imbrie, “Modelling the climatic response to orbital variations,” Science 207, 943–953 (1980).

    Article  CAS  Google Scholar 

  18. A. L. Berger, M. F. Loutre, and H. Gallee, “Sensitivity of the LLN climate model to the astronomical and CO2 forcings over the last 200 Ky,” Clim. Dyn. 14, 615–629 (1998).

    Article  Google Scholar 

  19. A. Berger, “The Milankovitch astronomical theory of paleoclimates: A modern review,” Vistas Astron. 24, 103–122 (1980).

    Article  Google Scholar 

  20. G. Kukla, “Revival of Milankovitch,” Nature 261, 11 (1976).

    Article  Google Scholar 

  21. G. Kukla, “Saalian supercycle, Mindel/Riss interglacial and Milankovitch’s dating,” Quaternary Sci. Rev. 24, 1573–1583 (2005).

    Article  Google Scholar 

  22. C. R. Tabor, C. J. Poulsen, and D. Pollard, “Mending Milankovitch’s theory: Obliquity amplification by surface feedbacks,” Climat. Past 10, 41–50 (2014).

    Article  Google Scholar 

  23. D. Paillard, “Quaternary glaciations: From observations to theories,” Quaternary Sci. Rev. 107, 11–24 (2015).

    Article  Google Scholar 

  24. D. Paillard, “Glacial cycles: Toward a new paradigm,” Revs. Geophys. 39, 325–346 (2001).

    Article  CAS  Google Scholar 

  25. D. Paillard, “On Quaternary glaciations, observations, and theories,” Quaternary Sci. Rev. 120, 128–132 (2015).

    Article  Google Scholar 

  26. V. A. Bol’shakov and Ya. V. Kuzmin, “Comment on ‘Quaternary glaciations: From observations to theories’ by D. Paillard,” Quaternary Sci. Rev. 120, 126–128 (2015).

    Article  Google Scholar 

  27. P. U. Clark, R. B. Alley, and D. Pollard, “Northern Hemisphere ice-sheet influences on global climate change,” Science 286 (5), 1104–1111 (1999).

    Article  CAS  Google Scholar 

  28. A. Berger, X. Li, and M. Loutre, “Modeling Northern Hemisphere ice volume over the last 3 Ma,” Quaternary Sci. Rev. 18, 1–11 (1999).

    Article  Google Scholar 

  29. V. A. Bol’shakov, “On the mechanism of the Middle Pleistocene transition,” Stratigr. Geol. Correl. 23 (5), 536–550 (2015).

    Article  Google Scholar 

  30. A. Ganopolski and R. Calov, “The role of orbital forcing, carbon dioxide and regolith in 100 Kyr glacial cycles,” Clim. Past 7, 1415–1425 (2011).

    Article  Google Scholar 

  31. Past Interglacials Working Group of PAGES, “Interglacials of the last 800 000 years,” Rev. Geophys. 54, 1–58 (2016).

    Article  Google Scholar 

  32. J. Jouzel, “A brief history of ice core science over the last 50 years,” Clim. Past 9, 2525–2547 (2013).

    Article  Google Scholar 

  33. V. A. Bol’shakov, “A link between global climate variability in the Pleistocene and variations in the Earth’s orbital parameters,” Stratigr. Geol. Correl. 22 (5), 538–551 (2014).

    Article  Google Scholar 

  34. V. A. Bol’shakov, “Orbital factors of long-period climate oscillations in Pleistocene,” Fundamental. Prikl. Klimatol. 1 (1), 49–77 (2015).

    Google Scholar 

  35. L. E. Lisiecki and M. E. Raymo, “A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records,” Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  36. V. A. Bol’shakov, “A new way of building the diagram of paleoclimatic changes in the Pleistocene,” Dokl. Akad. Nauk. Ser. Geogr. 374 (5), 692–695 (2000).

    Google Scholar 

  37. V. A. Bol’shakov and A. G. Prudkovskii, “Improving the orbital-climatic diagram as a tool to interpret and analyze paleoclimatic records of the Pleistocene,” Vestn. Mosk. Gos. Univ. Ser. 5: Geogr., No. 6, 30–39 (2013).

    Google Scholar 

  38. J. D. Shakun, P. U. Clark, F. He, et al., “Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation,” Nature 484, 49–54 (2012).

    Article  CAS  Google Scholar 

  39. W. S. Broecker and G. H. Denton, “What drives glacial cycles?,” Sci. Am. 262 (1), 49–56 (1990).

    Article  Google Scholar 

  40. A. Ganopolski, R. Winkelmann, and H. J. Schellnhuber, “Critical insolation–CO2 relation for diagnosing past and future glacial inception,” Nature 529, 200–203 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bol’shakov.

Additional information

Original Russian Text © V.A. Bol’shakov, 2017, published in Vestnik Rossiiskoi Akademii Nauk, 2017, Vol. 87, No. 7, pp. 635–649.

Vyacheslav Aleksandrovich Bol’shakov, Dr. Sci. (Phys.–Math.), is a Leading Researcher at the Faculty of Geography, Moscow State University

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bol’shakov, V.A. On the ill-defined notion of the Milankovitch Theory and its influence on the development of the orbital theory of the paleoclimate. Her. Russ. Acad. Sci. 87, 356–369 (2017). https://doi.org/10.1134/S1019331617040025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1019331617040025

Keywords

Navigation