Skip to main content
Log in

Mars and Venus: Different destinies of terrestrial planets

  • On the Rostrum of the Ras Presidium
  • Published:
Herald of the Russian Academy of Sciences Aims and scope Submit manuscript

Abstract

Being insignificantly different in distance from the Sun, the main terrestrial planets—Venus, the Earth, and Mars—fall, with due account for inaccuracies, within the so-called habitable zone, i.e., the range of distances from a parent star within which water on the planets can exist in the liquid state. Most likely, in the process of their formation, the three planets received approximately the same share of water. However, only the Earth’s climate is suitable for the development of life. How did it happen that Mars became cold and water on it froze, while the absolutely dry surface of Venus is red hot, exceeding 460°C? Was this always the situation? Climate changes on Mars and Venus from the beginning of the planets' independent existence to the present day are considered, and parallels are drawn with the changing climate of the Earth. The article also discusses how the particularities of the early climate of Mars are related to its inhabitation, as well as the likelihood of discovering biological activity on that planet. Some of the results presented in this article were obtained using Russian instruments installed on the artificial satellites Mars Express and Venus Express.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. E. Smrekar, E. R. Stofan, N. Mueller, et al., “Recent hotspot volcanism on Venus from VIRTIS emissivity data,” Science 328, 605 (2010).

    Article  CAS  Google Scholar 

  2. E. V. Shalygin, W. J. Markiewicz, A. T. Basilevsky, et al., “Active volcanism on Venus in the Ganiki Chasma rift zone,” Geophys. Res. Lett. 42, 4762 (2015).

    Article  Google Scholar 

  3. J.-L. Bertaux, T. Widemann, and A. Hauchecome, “VEGA 1 and VEGA 2 entry probes: An investigation of local UV absorption (220–400 nm) in the atmosphere of Venus (SO2, aerosols, cloud structure),” J. Geophys. Res. 101, 12709 (1996).

    Article  Google Scholar 

  4. F. J. Martin-Torres, M.-P. Zorzano, P. Valentin-Serrano, et al., “Transient liquid water and water activity at Gale crater on Mars,” Nature Geosci. 8 (5), 357 (2015).

    Article  CAS  Google Scholar 

  5. G. S. Golitsyn and A. S. Ginsburg, “Comparative estimates of climatic consequences of Martian dust storms and of possible nuclear war,” Tellus, Ser. B 37 (3), 173 (1985).

    Article  Google Scholar 

  6. I. Mitrofanov, D. Anfimov, A. Kozyrev, et al., “Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey,” Science 297, 78 (2002).

    Article  CAS  Google Scholar 

  7. W. V. Boynton, W. C. Feldman, S. W. Squyres, et al., “Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits,” Science 297, 81 (2002).

    Article  CAS  Google Scholar 

  8. R. M. Goody and J. C. G. Walker, Atmospheres. Foundations of Earth Science Series (Prentice-Hall, Englewood Cliffs, New Jersey, 1972).

    Google Scholar 

  9. S. Atreya et al., “Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss,” Geophys. Res. Lett. 40, 5605 (2013).

    Article  CAS  Google Scholar 

  10. V. Krasnopolsky, “Atmospheric chemistry on Venus, Earth, and Mars: Main features and comparison,” Planet. Space Sci. 59 (10), 952 (2011).

    Article  CAS  Google Scholar 

  11. H. Lammer, E. Chassefière, Özgür Karatekin, et al., “Outgassing history and escape of the Martian atmosphere and water inventory,” Space Sci. Rev. 174, 113 (2013).

    Article  CAS  Google Scholar 

  12. K. J. Zahnle, J. F. Kasting, and J. B. Pollack, “Evolution of a steam atmosphere during Earth’s accretion,” Icarus 74, 62 (1988).

    Article  CAS  Google Scholar 

  13. L. T. Elkins-Tanton, “Formation of early water oceans on rocky planets,” Astrophys. Space Sci. 332, 359 (2011).

    Article  CAS  Google Scholar 

  14. K. Altwegg, H. Balsiger, A. Bar-Nun, et al., “67P/Churyumov–Gerasimenko, a Jupiter family comet with a high D/H ratio,” Science 347 (6220), 387 (2015).

    Article  Google Scholar 

  15. P. R. Mahaffy, C. R. Webster, J. C. Stern, et al., “The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars,” Science 347, 412 (2015).

    Article  CAS  Google Scholar 

  16. J.-P. Bibring, Y. Langevin, John F. Mustard, et al., “Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data,” Science 312, 400 (2006).

    Article  CAS  Google Scholar 

  17. B. L. Ehlmann, J. F. Mustard, S. L. Murchie, et al., “Orbital identification of carbonate-bearing rocks on Mars,” Science 322, 1828 (2008).

    Article  CAS  Google Scholar 

  18. C. S. Edwards and B. L. Ehlmann, “Carbon sequestration on Mars,” Geology 43, 863 (2015).

    Article  CAS  Google Scholar 

  19. A. Fedorova, O. Korablev, A.-C. Vandaele, et al., “HDO and H2O vertical distributions and isotopic ratio in the Venus mesosphere by Solar occultation at infrared spectrometer on board Venus Express,” J. Geophys. Res. (Planets) 113, E00B22 (2008).

  20. J. F. Kasting, “Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus,” Icarus 74, 472 (1988).

    Article  CAS  Google Scholar 

  21. K. Hamano, Y. Abe, and H. Genda, “Emergence of two types of terrestrial planet on solidification of magma ocean,” Nature 497, 607 (2013).

    Article  CAS  Google Scholar 

  22. D. P. Glavin, M. Schubert, O. Botta, et al., “Detecting pyrolysis products from bacteria on Mars,” Earth Planet. Sci. Lett. 185, 1 (2001).

    Article  CAS  Google Scholar 

  23. D. W. Ming, P. D. Archer Jr., D. P. Glavin, et al., “Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater, Mars,” Science 343 (6169), 386 (2014).

    Article  Google Scholar 

  24. K. A. Farley, C. Malespin, P. Mahaffy, et al., “In situ radiometric and exposure age dating of the Martian surface,” Science 343 (6169), 386 (2014).

    Article  Google Scholar 

  25. D. S. McKay, E. K. Gibson Jr., K. L. Thomas-Keprta, et al., “Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001,” Science 273, 924 (1996).

    Article  CAS  Google Scholar 

  26. L. M. White, E. K. Gibson, L. L. Thomas-Keprta, et al., “Putative indigenous carbon-bearing alteration features in Martian meteorite Yamato 000593,” Astrobiology 14, 170 (2014).

    Article  CAS  Google Scholar 

  27. V. A. Krasnopolsky, J. P. Maillard, and T. C. Owen, “Detection of methane in the Martian atmosphere: Evidence for life?,” Icarus 172, 537 (2004).

    Article  CAS  Google Scholar 

  28. V. Formisano, S. Atreya, T. Encrenaz, et al., “Detection of methane in the atmosphere of Mars,” Science 306, 1758 (2004).

    Article  CAS  Google Scholar 

  29. M. J. Mumma, G. L. Villanueva, R. E. Novak, et al., “Strong release of methane on Mars in northern summer 2003,” Science 323, 1041 (2009).

    Article  CAS  Google Scholar 

  30. F. Lefèvre and F. Forget, “Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics,” Nature 460, 720 (2009).

    Article  Google Scholar 

  31. O. Korablev, A. Trokhimovsky, A. V. Grigoriev, et al., “Three infrared spectrometers, an atmospheric chemistry suite for the ExoMars 2016 trace gas orbiter,” J. Applied Remote Sensing 8 (1–13), 084983 (2014).

    Article  Google Scholar 

  32. O. I. Korablev, F. Montmessin, A. A. Fedorova, et al., “ACS experiment for atmospheric studies on ‘ExoMars-2016’ orbiter,” Sol. Syst. Res. 49 (7), 529 (2015).

    Article  Google Scholar 

  33. O. I. Korablev, “Space-based spectroscopy of Mars: New methods and new results,” Phys. Usp. 56, 722 (2013).

    Article  Google Scholar 

  34. R. I. Nigmatulin, “Notes on global climate and ocean currents,” Izv., Atmos. Ocean. Phys. 48 (1), 30 (2012).

    Article  Google Scholar 

  35. R. T. Pierrehumbert, “High levels of atmospheric carbon dioxide necessary for the termination of global glaciation,” Nature 429, 646 (2004).

    Article  CAS  Google Scholar 

  36. J. Laskar, A. C. M. Correia, M. Gastineau, et al., “Long term evolution and chaotic diffusion of the insolation quantities of Mars,” Icarus 170, 343 (2004).

    Article  Google Scholar 

  37. J. W. Head, G. Neukum, R. Jaumann, et al., “Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars,” Nature 434, 346 (2005).

    Article  CAS  Google Scholar 

  38. M. C. Malin, M. A. Caplinger, and S. D. Davis, “Observational evidence for an active surface reservoir of solid carbon dioxide on Mars,” Science 294, 2146 (2001).

    Article  CAS  Google Scholar 

  39. A. Trokhimovskiy, A. Fdedorova, O. Korablev, et al., “Mars’ water vapor mapping by the SPICAM IR spectrometer: Five Martian years of observations,” Icarus 251, 50 (2015).

    Article  Google Scholar 

  40. A. A. Fedorova, S. Trokhimovskiy, O. Korablev, et al., “Viking observation of water vapor on Mars: Revision from up-to-date spectroscopy and atmospheric models,” Icarus 208, 156 (2010).

    Article  CAS  Google Scholar 

  41. M. T. Mellon, W. C. Feldman, and T. H. Prettyman, “The presence and stability of ground ice in the southern hemisphere of Mars,” Icarus 169, 324 (2004).

    Article  CAS  Google Scholar 

  42. L. U. Espozito, “Changes in the SO2 content in the atmosphere of Venus and the concept of active volcanism,” Astron. Vestn., No. 24, 57 (1990).

    Google Scholar 

  43. I. V. Khatuntsev, M. V. Patsaeva, D. V. Titov, et al., “Cloud level winds from the Venus Express Monitoring Camera imaging,” Icarus 226, 140 (2013).

    Article  Google Scholar 

  44. E. Marcq, J.-L. Bertaux, F. Montmessin, and D. Belyaev, “Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere,” Nature Geosci. 6, 25 (2013).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Korablev.

Additional information

Original Russian Text © O.I. Korablev, 2016, published in Vestnik Rossiiskoi Akademii Nauk, 2016, Vol. 86, No. 7, pp. 587–600.

Oleg Igorevich Korablev, Dr. Sci. (Phys.–Math.), is a deputy director of the RAS Space Research Institute and head of the Department of Planetary Physics of this institute.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korablev, O.I. Mars and Venus: Different destinies of terrestrial planets. Her. Russ. Acad. Sci. 86, 285–297 (2016). https://doi.org/10.1134/S1019331616040055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1019331616040055

Keywords

Navigation