Skip to main content
Log in

Materials and technologies for gas feedstock processing: Challenges, prospects, and solutions

  • On the Rostrum of the RAS Presidium
  • Published:
Herald of the Russian Academy of Sciences Aims and scope Submit manuscript

Abstract

The Russian Federation has large gas resources, and an increase in the share of their chemical processing is a topical problem, solution of which involves many scientific teams. This paper describes innovative achievements of the author and his colleagues in developing highly efficient catalysts for methane conversion into ethylene and synthesis gas—key large-tonnage semiproducts of the chemical industry. The prospects of creating corresponding technologies and their practical implementation are discussed. In particular, for the most active catalysts of ethylene production, technical conditions and a production technology have been developed and introduced at the Baltic Enterprise (Baltiiskaya Manufaktura) research and production company. Within the framework of cooperation with the Gazprom public joint-stock company, technical conditions for catalysts for synthesis gas production have been developed and approved, mathematical modeling has been conducted, and options of reactor units and a process flowsheet have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Tsybul’skii, Report at the Gubkin Russian State Oil and Gas University (presentation) (Moscow, 2011) [in Russian].

    Google Scholar 

  2. BP Statistical Review of World Energy 2012.

  3. BP Statistical Review of World Energy 2015.

  4. http://www.interfax.ru/russia/416576. Cited March 25, 2016.

  5. S. Cornot-Gandolphe, The Impact of the Development of Shale Gas in the United States on Europe’s Petrochemical Industries (IFRI Centre Energie, 2013).

    Google Scholar 

  6. T. Khazova, “Oil and gas chemistry: A strategic kick,” Neftegaz.ru, No. 4, 34 (2013). http://www.allianceanalytics.ru/upload/iblock/fc7/aliyans.pdf. Cited March 25, 2016.

    Google Scholar 

  7. E.A.Golysheva, http://www.alliance-analytics.ru/upload/iblock/2de/3.%20Golysheva%20E.A.pdf. Cited March 25, 2016.

  8. E. Atepaeva, “US and Chinese capacities to produce ethylene,” Neftegazovaya Vertikal’, No. 23, 24 (2014). http://www.ngv.ru/news/globaldata_moshchnosti_po_proizvodstvu_etilena_ssha_i_kitaya/?sphrase_id=294671. Cited March 25, 2016.

    Google Scholar 

  9. A.G.Dedov, V.A.Ketsko, T.N.Kol’tsova, et al., RF Patent no. 2341507, Byull. Izobret., no. 35 (2008).

  10. A. G. Dedov, G. D. Nipan, A. S. Loktev, et al., “Oxidative coupling of methane: Influence of the phase composition of silica-based catalysts,” Applied Catalysis A: General 406, 1 (2011).

    Article  CAS  Google Scholar 

  11. G. D. Nipan, A. G. Dedov, A. S. Loktev, et al., “SiO2based composites in the catalysis of methane oxidative coupling: Role of phase composition,” Dokl. Phys. Chem. 419 (2), 73 (2008).

    Article  CAS  Google Scholar 

  12. B. Vora, J. Q. Chen, A. Bozzano, et al., “Various routes to methane utilization—SAPO-34 catalysis offers the best option,” Catalysis Today 141, 77 (2009).

    Article  CAS  Google Scholar 

  13. A. G. Dedov, V. A. Makhlin, M. V. Podlesnaya, et al., “Kinetics, mathematical modeling, and optimization of the oxidative coupling of methane over a LiMnW/SiO2 catalyst,” Theor. Found. Chem. Eng. 44 (1), 1 (2010).

    Article  CAS  Google Scholar 

  14. A. A. Tyunyaev, G. D. Nipan, T. N. Kol’tsova, et al., “Polymorphic Mn/W/Na(K,Rb,Cs)/SiO2 catalysts for oxidative coupling of methane,” Russ. J. Inorg. Chem. 54 (5), 664 (2009).

    Article  Google Scholar 

  15. A. G. Dedov, A. S. Loktev, G. D. Nipan, et al., “Oxidative coupling of methane to form ethylene: Effect of the preparation method on the phase composition and catalytic properties of Li–W–Mn–O–SiO2 composite materials,” Pet. Chem. 55 (2), 163 (2015).

    Article  CAS  Google Scholar 

  16. http://blog.propurchaser.com/2015/ethylene-december-low.Cited March 25, 2016.

  17. A.Larionova, http://www.mrcplast.ru/newsnews_open-301084.html. Cited March 25, 2016.

  18. http://expert.ru/2014/07/10/vzglyad-v-buduschee. Cited March 25, 2016.

  19. A. G. Dedov, A. S. Loktev, D. A. Komissarenko, et al., “Partial oxidation of methane to produce syngas over a neodymium-calcium cobaltate-based catalyst,” Applied Catalysis A: General 489, 140 (2015).

    Article  CAS  Google Scholar 

  20. A. G. Dedov, A. S. Loktev, D. A. Komissarenko, et al., “New selective catalysts of oxidative conversion of methane to synthesis gas,” Dokl. Phys. Chem. 441 (2), 233 (2011).

    Article  CAS  Google Scholar 

  21. A. G. Dedov, A. S. Loktev, G. N. Mazo, et al., “Highperformance catalytic materials for dry reforming of methane,” Dokl. Phys. Chem. 462 (1), 99 (2015).

    Article  CAS  Google Scholar 

  22. G. N. Mazo, L. M. Kolchina, N. V. Lyskov, et al., “Features of high-temperature behavior in NdCaCoO4—the catalyst of the partial oxidation of methane to syngas,” Russ. J. Phys. Chem. 87 (12), 1976 (2013).

    Article  CAS  Google Scholar 

  23. A. G. Dedov, A. S. Loktev, I. E. Mukhin, et al., “Selective oxidation of methane to synthesis gas: Cobaltand nickel-based catalysts,” Dokl. Phys. Chem. 461 (2), 73 (2015).

    Article  CAS  Google Scholar 

  24. T. N. Gartman, F. S. Sovetin, E. A. Borovkova, et al., “Producing synthesis gas by oxidative coupling of methane in the presence of a NdCaCoO4-based catalyst: Kinetic modeling of an autothermal process,” Neftekhimiya 55 (4), 302 (2015).

    Google Scholar 

  25. A. G. Dedov, E. S. Lobakova, P. B. Kashcheeva, et al., “New biocomposite materials based on fibrous polymeric matrices,” Dokl. Akad. Nauk 462 (4), 435 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Dedov.

Additional information

Original Russian Text © A.G. Dedov, 2016, published in Vestnik Rossiiskoi Akademii Nauk, 2016, Vol. 86, No. 5, pp. 396–405.

RAS Corresponding Member Aleksey Georgievich Dedov is Chairman of the Department of General and Inorganic Chemistry at the Gubkin Russian State Oil and Gas University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedov, A.G. Materials and technologies for gas feedstock processing: Challenges, prospects, and solutions. Her. Russ. Acad. Sci. 86, 234–241 (2016). https://doi.org/10.1134/S1019331616030023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1019331616030023

Keywords

Navigation