Skip to main content
Log in

Analysis of Influence Factors on Space Charge Accumulation Characteristics of 320 kV XLPE Cable

  • STRUCTURE AND PROPERTIES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The development of high voltage direct current (HVDC) transmission technology in China has put forward higher requirements to the properties of HVDC cable, the cross-linked polyethylene (XLPE) materials have drawn extensive attention for their excellent properties, and its interface space charge accumulation as well as field distribution have become a hot topic. Aiming at revealing the transport characteristics of space charge in 320 kV XLPE cable, the bipolar charge transport model has been extended to a cylindrical configuration with several modifications, featuring charge injection, trapping, detrapping and recombination. Furthermore, by setting parameters such as trap coefficient, trap depth, injection barrier height, and mobility related to material cross-linking, cable thermal aging, and nanoparticle doping, the space charge transport characteristics are simulated. The results show that the space charge density at the electrodes is decreased by the low trapping coefficient, shallow trap depth, high injection barrier, and high mobility. Therefore, the design of cable can be guided by the selection of cross-linked materials, thermal aging resistance and doping nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Z. L. Li and B. X. Du, IEEE Electr. Insul. Mag. 34, 30 (2018).

    Article  Google Scholar 

  2. D. Fabiani, G. C. Montanari, C. Laurent, G. Teyssedre, and U. H. Nilsson, IEEE Electr. Insul. Mag. 23, 11 (2007).

    Article  Google Scholar 

  3. B. X. Du, Z. L. Li, Z. R. Yang, and J. Li, High Voltage Eng. 43, 344 (2018).

    Google Scholar 

  4. A. Hedir, M. Moudoud, O. Lamrous, S. Rondot, O. Jbara, and P. Dony, J. Appl. Polym. Sci. 137, 48575 (2020).

    Article  CAS  Google Scholar 

  5. O. A. Lambri, F. G. Bonifacich, J. A. García, E. D. V. Giordano, G. I. Zelada, F. A. Sánchez, R. R. Mocellini, and F. Plazaola, J. Appl. Polym. Sci. 136, 47605 (2019).

    Article  Google Scholar 

  6. G. Chen and J. W. Zhao, J. Phys. D: Appl. Phys. 44, 212001 (2011).

  7. G. C. Montanari, IEEE Trans. Dielectr. Electr. Insul. 18, 339 (2011).

    Article  Google Scholar 

  8. Y. W. Zhang, J. Lewiner, C. Alquie, and N. Hampton, IEEE Trans. Dielectr. Electr. Insul. 3, 778 (1996).

    Article  Google Scholar 

  9. X. Y. Zhong, Y. S. Zheng, B. Dang, X. R. Miao, and J. L. He, P. CSEE 36, 6693 (2016).

    Google Scholar 

  10. M. J. P. Jeroense and P. H. F. Morshuis, IEEE Trans. Dielectr. Electr. Insul. 5, 225 (1998).

    Article  Google Scholar 

  11. T. N. Vu, G. Teyssedre, B. Vissouvanadin, S. L. Roy, and C. Laurent, IEEE Trans. Dielectr. Electr. Insul. 22, 117 (2015).

    Article  CAS  Google Scholar 

  12. J. M. Alison and R. M. Hill, J. Phys. D. Appl. Phys. 27, 1291 (1999).

    Article  Google Scholar 

  13. F. Baudoin, S. L. Roy, G. Teyssedre, and C. Laurent, J. Phys. D. Appl. Phys. 41, 025306 (2008).

  14. J. Li, H. C. Liang, B. X. Du, P. X. Song, X. X. Kong, and Z. L. Li, High Voltage Eng. 44, 1443 (2018).

    Google Scholar 

  15. S. L. Roy, G. Teyssedre, and C. Laurent, IEEE Trans. Dielectr. Electr. Insul. 23, 2361 (2016).

    Article  Google Scholar 

  16. Y. P. Zhan, G. Chen, and M. Hao, IEEE Trans. Dielectr. Electr. Insul. 26, 43 (2019).

    Article  CAS  Google Scholar 

  17. E. Belgaroui, I. Boukhris, A. Kallel, G. Teyssedre, and C. Laurent, J. Phys. D. Appl. Phys. 40, 6760 (2007).

    Article  CAS  Google Scholar 

  18. F. Q. Tian and C. Y. Hou, IEEE Trans. Dielectr. Electr. Insul. 25, 2169 (2018).

    Article  CAS  Google Scholar 

  19. F. Baudoin, S. L. Roy, G. Teyssedre, and C. Laurent, J. Phys. D. Appl. Phys. 41, 025306 (2008).

  20. S. L. Roy, P. Segur, G. Teyssedre, and C. Laurent, J. Phys. D: Appl. Phys. 37, 298 (2004).

    Article  Google Scholar 

  21. S. L. Roy, F. Baudoin, V. Griseri, C. Laurent, and G. Teyssedre, J. Phys. D: Appl. Phys. 112, 351 (2012).

    Google Scholar 

  22. F. Baudoin, G. Teyssedre, C. Laurent, S. L. Roy, L. A. Dissado, P. Ségur, and G. C. Montanar, J. Phys. D: Appl. Phys. 100, 104105 (2006).

  23. D. Fabiani, G. C. Montanari, C. Laurent, G. Teyssedre, P. H. F. Morshuis, R. Bodega, and L. A. Dissado, IEEE Electr. Insul. Mag. 24, 5 (2008).

    Article  Google Scholar 

  24. W. J. Mei, J. Di, W. P, Li, D. W. Sun, W. Pan, and K. Y. Liang, Insul. Mater. 54, 56 (2021).

    Google Scholar 

  25. X. J. Cai, X. X. Wang, D. Pang, X. B. Zou, and Z. W. Lu, Mater. Res. Express 6, 096451 (2019).

  26. S. L. Roy, G. Teyssedre, and C. Laurent, IEEE Trans. Dielectr. Electr. Insul. 13, 239 (2006).

    Article  Google Scholar 

  27. R. Bodega, PhD Thesis (Delft Univ. Technol., Delft, 2016).

  28. L. Lan, J. D. Wu, Y. Yin, and Q. X. Zhong, Jpn. J. Appl. Phys. 51, 041602 (2012).

  29. Y. P. Zhan, G. Chen, M. Hao, L. Pu, X.F. Zhao, S. Wang and J. Liu, Energies 13, 1906 (2020).

    Article  CAS  Google Scholar 

  30. Y. X. Zhou, Y. Wu, L. Zhang, Y. X. Zhang, X. Huang, and C. Y. Teng, Insul. Mater. 55, 23 (2022).

    Google Scholar 

  31. G. C. Montanari, C. Laurent, G. Teyssedre, A. Campus, and U. H. Nilsson, IEEE Trans. Dielectr. Electr. Insul. 12, 438 (2005).

    Article  CAS  Google Scholar 

  32. Y. Liu, H. Liu, L. Yu, Y. Li, and L. Gao, IEEE Trans. Dielectr. Electr. Insul. 24, 1355 (2017).

    Article  Google Scholar 

  33. H. Li, J. Y. Li, Y. X. Ma, and Q. M. Yan, CSEE J. Power Energy Syst. 33, 6740 (2017).

    Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Liaoning Province under Contract no. 2020-MS-214 and Program for Innovative Talents in University of Liaoning Province under the Grant LR2019047.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Formal analysis and investigation were performed by Xinjing Cai and Yuqi Liu. The first draft of the manuscript was written by Yuqi Liu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xinjing Cai.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuqi Liu, Cai, X. & Cai, S. Analysis of Influence Factors on Space Charge Accumulation Characteristics of 320 kV XLPE Cable. Polym. Sci. Ser. A 64, 415–423 (2022). https://doi.org/10.1134/S0965545X22700316

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X22700316

Navigation